( 5 x - 2 ) \times 3 \% = ( 7 x + 8 ) \times 20 \%
Solve for x
x = -\frac{166}{125} = -1\frac{41}{125} = -1.328
Graph
Share
Copied to clipboard
5x\times \frac{3}{100}-2\times \frac{3}{100}=\left(7x+8\right)\times \frac{20}{100}
Use the distributive property to multiply 5x-2 by \frac{3}{100}.
\frac{5\times 3}{100}x-2\times \frac{3}{100}=\left(7x+8\right)\times \frac{20}{100}
Express 5\times \frac{3}{100} as a single fraction.
\frac{15}{100}x-2\times \frac{3}{100}=\left(7x+8\right)\times \frac{20}{100}
Multiply 5 and 3 to get 15.
\frac{3}{20}x-2\times \frac{3}{100}=\left(7x+8\right)\times \frac{20}{100}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{3}{20}x+\frac{-2\times 3}{100}=\left(7x+8\right)\times \frac{20}{100}
Express -2\times \frac{3}{100} as a single fraction.
\frac{3}{20}x+\frac{-6}{100}=\left(7x+8\right)\times \frac{20}{100}
Multiply -2 and 3 to get -6.
\frac{3}{20}x-\frac{3}{50}=\left(7x+8\right)\times \frac{20}{100}
Reduce the fraction \frac{-6}{100} to lowest terms by extracting and canceling out 2.
\frac{3}{20}x-\frac{3}{50}=\left(7x+8\right)\times \frac{1}{5}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{3}{20}x-\frac{3}{50}=7x\times \frac{1}{5}+8\times \frac{1}{5}
Use the distributive property to multiply 7x+8 by \frac{1}{5}.
\frac{3}{20}x-\frac{3}{50}=\frac{7}{5}x+8\times \frac{1}{5}
Multiply 7 and \frac{1}{5} to get \frac{7}{5}.
\frac{3}{20}x-\frac{3}{50}=\frac{7}{5}x+\frac{8}{5}
Multiply 8 and \frac{1}{5} to get \frac{8}{5}.
\frac{3}{20}x-\frac{3}{50}-\frac{7}{5}x=\frac{8}{5}
Subtract \frac{7}{5}x from both sides.
-\frac{5}{4}x-\frac{3}{50}=\frac{8}{5}
Combine \frac{3}{20}x and -\frac{7}{5}x to get -\frac{5}{4}x.
-\frac{5}{4}x=\frac{8}{5}+\frac{3}{50}
Add \frac{3}{50} to both sides.
-\frac{5}{4}x=\frac{80}{50}+\frac{3}{50}
Least common multiple of 5 and 50 is 50. Convert \frac{8}{5} and \frac{3}{50} to fractions with denominator 50.
-\frac{5}{4}x=\frac{80+3}{50}
Since \frac{80}{50} and \frac{3}{50} have the same denominator, add them by adding their numerators.
-\frac{5}{4}x=\frac{83}{50}
Add 80 and 3 to get 83.
x=\frac{83}{50}\left(-\frac{4}{5}\right)
Multiply both sides by -\frac{4}{5}, the reciprocal of -\frac{5}{4}.
x=\frac{83\left(-4\right)}{50\times 5}
Multiply \frac{83}{50} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-332}{250}
Do the multiplications in the fraction \frac{83\left(-4\right)}{50\times 5}.
x=-\frac{166}{125}
Reduce the fraction \frac{-332}{250} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}