Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-20x+4=-20x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-2\right)^{2}.
25x^{2}-20x+4+20x=0
Add 20x to both sides.
25x^{2}+4=0
Combine -20x and 20x to get 0.
25x^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{4}{25}
Divide both sides by 25.
x=\frac{2}{5}i x=-\frac{2}{5}i
The equation is now solved.
25x^{2}-20x+4=-20x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-2\right)^{2}.
25x^{2}-20x+4+20x=0
Add 20x to both sides.
25x^{2}+4=0
Combine -20x and 20x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 25\times 4}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 0 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\times 4}}{2\times 25}
Square 0.
x=\frac{0±\sqrt{-100\times 4}}{2\times 25}
Multiply -4 times 25.
x=\frac{0±\sqrt{-400}}{2\times 25}
Multiply -100 times 4.
x=\frac{0±20i}{2\times 25}
Take the square root of -400.
x=\frac{0±20i}{50}
Multiply 2 times 25.
x=\frac{2}{5}i
Now solve the equation x=\frac{0±20i}{50} when ± is plus.
x=-\frac{2}{5}i
Now solve the equation x=\frac{0±20i}{50} when ± is minus.
x=\frac{2}{5}i x=-\frac{2}{5}i
The equation is now solved.