Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

5w^{2}-7w-4+2
Combine -w and -6w to get -7w.
5w^{2}-7w-2
Add -4 and 2 to get -2.
factor(5w^{2}-7w-4+2)
Combine -w and -6w to get -7w.
factor(5w^{2}-7w-2)
Add -4 and 2 to get -2.
5w^{2}-7w-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
w=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-7\right)±\sqrt{49-4\times 5\left(-2\right)}}{2\times 5}
Square -7.
w=\frac{-\left(-7\right)±\sqrt{49-20\left(-2\right)}}{2\times 5}
Multiply -4 times 5.
w=\frac{-\left(-7\right)±\sqrt{49+40}}{2\times 5}
Multiply -20 times -2.
w=\frac{-\left(-7\right)±\sqrt{89}}{2\times 5}
Add 49 to 40.
w=\frac{7±\sqrt{89}}{2\times 5}
The opposite of -7 is 7.
w=\frac{7±\sqrt{89}}{10}
Multiply 2 times 5.
w=\frac{\sqrt{89}+7}{10}
Now solve the equation w=\frac{7±\sqrt{89}}{10} when ± is plus. Add 7 to \sqrt{89}.
w=\frac{7-\sqrt{89}}{10}
Now solve the equation w=\frac{7±\sqrt{89}}{10} when ± is minus. Subtract \sqrt{89} from 7.
5w^{2}-7w-2=5\left(w-\frac{\sqrt{89}+7}{10}\right)\left(w-\frac{7-\sqrt{89}}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+\sqrt{89}}{10} for x_{1} and \frac{7-\sqrt{89}}{10} for x_{2}.