Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(5a\right)^{2}-\left(3c\right)^{2}-\left(7c-a\right)\left(7c+a\right)
Consider \left(5a-3c\right)\left(5a+3c\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5^{2}a^{2}-\left(3c\right)^{2}-\left(7c-a\right)\left(7c+a\right)
Expand \left(5a\right)^{2}.
25a^{2}-\left(3c\right)^{2}-\left(7c-a\right)\left(7c+a\right)
Calculate 5 to the power of 2 and get 25.
25a^{2}-3^{2}c^{2}-\left(7c-a\right)\left(7c+a\right)
Expand \left(3c\right)^{2}.
25a^{2}-9c^{2}-\left(7c-a\right)\left(7c+a\right)
Calculate 3 to the power of 2 and get 9.
25a^{2}-9c^{2}-\left(\left(7c\right)^{2}-a^{2}\right)
Consider \left(7c-a\right)\left(7c+a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
25a^{2}-9c^{2}-\left(7^{2}c^{2}-a^{2}\right)
Expand \left(7c\right)^{2}.
25a^{2}-9c^{2}-\left(49c^{2}-a^{2}\right)
Calculate 7 to the power of 2 and get 49.
25a^{2}-9c^{2}-49c^{2}-\left(-a^{2}\right)
To find the opposite of 49c^{2}-a^{2}, find the opposite of each term.
25a^{2}-9c^{2}-49c^{2}+a^{2}
The opposite of -a^{2} is a^{2}.
25a^{2}-58c^{2}+a^{2}
Combine -9c^{2} and -49c^{2} to get -58c^{2}.
26a^{2}-58c^{2}
Combine 25a^{2} and a^{2} to get 26a^{2}.
\left(5a\right)^{2}-\left(3c\right)^{2}-\left(7c-a\right)\left(7c+a\right)
Consider \left(5a-3c\right)\left(5a+3c\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5^{2}a^{2}-\left(3c\right)^{2}-\left(7c-a\right)\left(7c+a\right)
Expand \left(5a\right)^{2}.
25a^{2}-\left(3c\right)^{2}-\left(7c-a\right)\left(7c+a\right)
Calculate 5 to the power of 2 and get 25.
25a^{2}-3^{2}c^{2}-\left(7c-a\right)\left(7c+a\right)
Expand \left(3c\right)^{2}.
25a^{2}-9c^{2}-\left(7c-a\right)\left(7c+a\right)
Calculate 3 to the power of 2 and get 9.
25a^{2}-9c^{2}-\left(\left(7c\right)^{2}-a^{2}\right)
Consider \left(7c-a\right)\left(7c+a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
25a^{2}-9c^{2}-\left(7^{2}c^{2}-a^{2}\right)
Expand \left(7c\right)^{2}.
25a^{2}-9c^{2}-\left(49c^{2}-a^{2}\right)
Calculate 7 to the power of 2 and get 49.
25a^{2}-9c^{2}-49c^{2}-\left(-a^{2}\right)
To find the opposite of 49c^{2}-a^{2}, find the opposite of each term.
25a^{2}-9c^{2}-49c^{2}+a^{2}
The opposite of -a^{2} is a^{2}.
25a^{2}-58c^{2}+a^{2}
Combine -9c^{2} and -49c^{2} to get -58c^{2}.
26a^{2}-58c^{2}
Combine 25a^{2} and a^{2} to get 26a^{2}.