Solve for x
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Share
Copied to clipboard
55-11x=14x
Use the distributive property to multiply 5-x by 11.
55-11x-14x=0
Subtract 14x from both sides.
55-25x=0
Combine -11x and -14x to get -25x.
-25x=-55
Subtract 55 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-55}{-25}
Divide both sides by -25.
x=\frac{11}{5}
Reduce the fraction \frac{-55}{-25} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}