Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

25-20x+4x^{2}-\left(2x+5\right)\left(2x-5\right)+10\left(2x-5\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
25-20x+4x^{2}-\left(\left(2x\right)^{2}-25\right)+10\left(2x-5\right)
Consider \left(2x+5\right)\left(2x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
25-20x+4x^{2}-\left(2^{2}x^{2}-25\right)+10\left(2x-5\right)
Expand \left(2x\right)^{2}.
25-20x+4x^{2}-\left(4x^{2}-25\right)+10\left(2x-5\right)
Calculate 2 to the power of 2 and get 4.
25-20x+4x^{2}-4x^{2}+25+10\left(2x-5\right)
To find the opposite of 4x^{2}-25, find the opposite of each term.
25-20x+25+10\left(2x-5\right)
Combine 4x^{2} and -4x^{2} to get 0.
50-20x+10\left(2x-5\right)
Add 25 and 25 to get 50.
50-20x+20x-50
Use the distributive property to multiply 10 by 2x-5.
50-50
Combine -20x and 20x to get 0.
0
Subtract 50 from 50 to get 0.