Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(\sqrt{2}\left(2\sqrt{3}-3\sqrt{8}\right)-\left(2\sqrt{2}-1\right)^{2}\right)}{\sqrt{132}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-3\times 2\sqrt{2}\right)-\left(2\sqrt{2}-1\right)^{2}\right)}{\sqrt{132}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(2\sqrt{2}-1\right)^{2}\right)}{\sqrt{132}}
Multiply -3 and 2 to get -6.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1\right)\right)}{\sqrt{132}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-1\right)^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(4\times 2-4\sqrt{2}+1\right)\right)}{\sqrt{132}}
The square of \sqrt{2} is 2.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(8-4\sqrt{2}+1\right)\right)}{\sqrt{132}}
Multiply 4 and 2 to get 8.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(9-4\sqrt{2}\right)\right)}{\sqrt{132}}
Add 8 and 1 to get 9.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)}{\sqrt{132}}
To find the opposite of 9-4\sqrt{2}, find the opposite of each term.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)}{2\sqrt{33}}
Factor 132=2^{2}\times 33. Rewrite the square root of the product \sqrt{2^{2}\times 33} as the product of square roots \sqrt{2^{2}}\sqrt{33}. Take the square root of 2^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)\sqrt{33}}{2\left(\sqrt{33}\right)^{2}}
Rationalize the denominator of \frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)}{2\sqrt{33}} by multiplying numerator and denominator by \sqrt{33}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)\sqrt{33}}{2\times 33}
The square of \sqrt{33} is 33.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)\sqrt{33}}{66}
Multiply 2 and 33 to get 66.
\frac{5\left(2\sqrt{2}\sqrt{3}-6\left(\sqrt{2}\right)^{2}-9+4\sqrt{2}\right)\sqrt{33}}{66}
Use the distributive property to multiply \sqrt{2} by 2\sqrt{3}-6\sqrt{2}.
\frac{5\left(2\sqrt{6}-6\left(\sqrt{2}\right)^{2}-9+4\sqrt{2}\right)\sqrt{33}}{66}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{5\left(2\sqrt{6}-6\times 2-9+4\sqrt{2}\right)\sqrt{33}}{66}
The square of \sqrt{2} is 2.
\frac{5\left(2\sqrt{6}-12-9+4\sqrt{2}\right)\sqrt{33}}{66}
Multiply -6 and 2 to get -12.
\frac{5\left(2\sqrt{6}-21+4\sqrt{2}\right)\sqrt{33}}{66}
Subtract 9 from -12 to get -21.
\frac{\left(10\sqrt{6}-105+20\sqrt{2}\right)\sqrt{33}}{66}
Use the distributive property to multiply 5 by 2\sqrt{6}-21+4\sqrt{2}.
\frac{10\sqrt{6}\sqrt{33}-105\sqrt{33}+20\sqrt{2}\sqrt{33}}{66}
Use the distributive property to multiply 10\sqrt{6}-105+20\sqrt{2} by \sqrt{33}.
\frac{10\sqrt{198}-105\sqrt{33}+20\sqrt{2}\sqrt{33}}{66}
To multiply \sqrt{6} and \sqrt{33}, multiply the numbers under the square root.
\frac{10\sqrt{198}-105\sqrt{33}+20\sqrt{66}}{66}
To multiply \sqrt{2} and \sqrt{33}, multiply the numbers under the square root.
\frac{10\times 3\sqrt{22}-105\sqrt{33}+20\sqrt{66}}{66}
Factor 198=3^{2}\times 22. Rewrite the square root of the product \sqrt{3^{2}\times 22} as the product of square roots \sqrt{3^{2}}\sqrt{22}. Take the square root of 3^{2}.
\frac{30\sqrt{22}-105\sqrt{33}+20\sqrt{66}}{66}
Multiply 10 and 3 to get 30.