Evaluate
\frac{10\sqrt{66}}{33}+\frac{15\sqrt{22}}{33}-\frac{35\sqrt{33}}{22}\approx -4.545239955
Share
Copied to clipboard
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-3\sqrt{8}\right)-\left(2\sqrt{2}-1\right)^{2}\right)}{\sqrt{132}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-3\times 2\sqrt{2}\right)-\left(2\sqrt{2}-1\right)^{2}\right)}{\sqrt{132}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(2\sqrt{2}-1\right)^{2}\right)}{\sqrt{132}}
Multiply -3 and 2 to get -6.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1\right)\right)}{\sqrt{132}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-1\right)^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(4\times 2-4\sqrt{2}+1\right)\right)}{\sqrt{132}}
The square of \sqrt{2} is 2.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(8-4\sqrt{2}+1\right)\right)}{\sqrt{132}}
Multiply 4 and 2 to get 8.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-\left(9-4\sqrt{2}\right)\right)}{\sqrt{132}}
Add 8 and 1 to get 9.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)}{\sqrt{132}}
To find the opposite of 9-4\sqrt{2}, find the opposite of each term.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)}{2\sqrt{33}}
Factor 132=2^{2}\times 33. Rewrite the square root of the product \sqrt{2^{2}\times 33} as the product of square roots \sqrt{2^{2}}\sqrt{33}. Take the square root of 2^{2}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)\sqrt{33}}{2\left(\sqrt{33}\right)^{2}}
Rationalize the denominator of \frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)}{2\sqrt{33}} by multiplying numerator and denominator by \sqrt{33}.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)\sqrt{33}}{2\times 33}
The square of \sqrt{33} is 33.
\frac{5\left(\sqrt{2}\left(2\sqrt{3}-6\sqrt{2}\right)-9+4\sqrt{2}\right)\sqrt{33}}{66}
Multiply 2 and 33 to get 66.
\frac{5\left(2\sqrt{2}\sqrt{3}-6\left(\sqrt{2}\right)^{2}-9+4\sqrt{2}\right)\sqrt{33}}{66}
Use the distributive property to multiply \sqrt{2} by 2\sqrt{3}-6\sqrt{2}.
\frac{5\left(2\sqrt{6}-6\left(\sqrt{2}\right)^{2}-9+4\sqrt{2}\right)\sqrt{33}}{66}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{5\left(2\sqrt{6}-6\times 2-9+4\sqrt{2}\right)\sqrt{33}}{66}
The square of \sqrt{2} is 2.
\frac{5\left(2\sqrt{6}-12-9+4\sqrt{2}\right)\sqrt{33}}{66}
Multiply -6 and 2 to get -12.
\frac{5\left(2\sqrt{6}-21+4\sqrt{2}\right)\sqrt{33}}{66}
Subtract 9 from -12 to get -21.
\frac{\left(10\sqrt{6}-105+20\sqrt{2}\right)\sqrt{33}}{66}
Use the distributive property to multiply 5 by 2\sqrt{6}-21+4\sqrt{2}.
\frac{10\sqrt{6}\sqrt{33}-105\sqrt{33}+20\sqrt{2}\sqrt{33}}{66}
Use the distributive property to multiply 10\sqrt{6}-105+20\sqrt{2} by \sqrt{33}.
\frac{10\sqrt{198}-105\sqrt{33}+20\sqrt{2}\sqrt{33}}{66}
To multiply \sqrt{6} and \sqrt{33}, multiply the numbers under the square root.
\frac{10\sqrt{198}-105\sqrt{33}+20\sqrt{66}}{66}
To multiply \sqrt{2} and \sqrt{33}, multiply the numbers under the square root.
\frac{10\times 3\sqrt{22}-105\sqrt{33}+20\sqrt{66}}{66}
Factor 198=3^{2}\times 22. Rewrite the square root of the product \sqrt{3^{2}\times 22} as the product of square roots \sqrt{3^{2}}\sqrt{22}. Take the square root of 3^{2}.
\frac{30\sqrt{22}-105\sqrt{33}+20\sqrt{66}}{66}
Multiply 10 and 3 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}