Solve for f
f=-\frac{\sqrt{2}e^{2}}{2}+2e+18\sqrt{2}\approx 25.667556106
Share
Copied to clipboard
15\left(\sqrt{2}\right)^{2}+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Apply the distributive property by multiplying each term of 5\sqrt{2}-e by each term of 3\sqrt{2}+e.
15\times 2+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
The square of \sqrt{2} is 2.
30+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Multiply 15 and 2 to get 30.
30+2\sqrt{2}e-e^{2}=f\sqrt{2}-6
Combine 5\sqrt{2}e and -3e\sqrt{2} to get 2\sqrt{2}e.
f\sqrt{2}-6=30+2\sqrt{2}e-e^{2}
Swap sides so that all variable terms are on the left hand side.
f\sqrt{2}=30+2\sqrt{2}e-e^{2}+6
Add 6 to both sides.
f\sqrt{2}=36+2\sqrt{2}e-e^{2}
Add 30 and 6 to get 36.
\sqrt{2}f=2e\sqrt{2}-e^{2}+36
The equation is in standard form.
\frac{\sqrt{2}f}{\sqrt{2}}=\frac{2e\sqrt{2}-e^{2}+36}{\sqrt{2}}
Divide both sides by \sqrt{2}.
f=\frac{2e\sqrt{2}-e^{2}+36}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
f=\frac{\sqrt{2}\left(2e\sqrt{2}-e^{2}+36\right)}{2}
Divide 36+2e\sqrt{2}-e^{2} by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}