Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{25+2}{5}-1.8}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Multiply 5 and 5 to get 25.
\frac{\frac{27}{5}-1.8}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Add 25 and 2 to get 27.
\frac{\frac{27}{5}-\frac{9}{5}}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Convert decimal number 1.8 to fraction \frac{18}{10}. Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{27-9}{5}}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Since \frac{27}{5} and \frac{9}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18}{5}}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Subtract 9 from 27 to get 18.
\frac{\frac{18}{5}}{\left(\frac{23}{20}+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Convert decimal number 1.15 to fraction \frac{115}{100}. Reduce the fraction \frac{115}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{18}{5}}{\left(\frac{69}{60}+\frac{26}{60}\right)\times \frac{1\times 3+2}{3}}
Least common multiple of 20 and 30 is 60. Convert \frac{23}{20} and \frac{13}{30} to fractions with denominator 60.
\frac{\frac{18}{5}}{\frac{69+26}{60}\times \frac{1\times 3+2}{3}}
Since \frac{69}{60} and \frac{26}{60} have the same denominator, add them by adding their numerators.
\frac{\frac{18}{5}}{\frac{95}{60}\times \frac{1\times 3+2}{3}}
Add 69 and 26 to get 95.
\frac{\frac{18}{5}}{\frac{19}{12}\times \frac{1\times 3+2}{3}}
Reduce the fraction \frac{95}{60} to lowest terms by extracting and canceling out 5.
\frac{\frac{18}{5}}{\frac{19}{12}\times \frac{3+2}{3}}
Multiply 1 and 3 to get 3.
\frac{\frac{18}{5}}{\frac{19}{12}\times \frac{5}{3}}
Add 3 and 2 to get 5.
\frac{\frac{18}{5}}{\frac{19\times 5}{12\times 3}}
Multiply \frac{19}{12} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{18}{5}}{\frac{95}{36}}
Do the multiplications in the fraction \frac{19\times 5}{12\times 3}.
\frac{18}{5}\times \frac{36}{95}
Divide \frac{18}{5} by \frac{95}{36} by multiplying \frac{18}{5} by the reciprocal of \frac{95}{36}.
\frac{18\times 36}{5\times 95}
Multiply \frac{18}{5} times \frac{36}{95} by multiplying numerator times numerator and denominator times denominator.
\frac{648}{475}
Do the multiplications in the fraction \frac{18\times 36}{5\times 95}.