Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5^{1}-\frac{14}{7}\right)^{4}}{\left(3^{2}\times 2-3\times 5\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 3 from 4 to get 1.
\frac{\left(5-\frac{14}{7}\right)^{4}}{\left(3^{2}\times 2-3\times 5\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
Calculate 5 to the power of 1 and get 5.
\frac{\left(5-2\right)^{4}}{\left(3^{2}\times 2-3\times 5\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
Divide 14 by 7 to get 2.
\frac{3^{4}}{\left(3^{2}\times 2-3\times 5\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
Subtract 2 from 5 to get 3.
\frac{81}{\left(3^{2}\times 2-3\times 5\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
Calculate 3 to the power of 4 and get 81.
\frac{81}{\left(9\times 2-3\times 5\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
Calculate 3 to the power of 2 and get 9.
\frac{81}{\left(18-3\times 5\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
Multiply 9 and 2 to get 18.
\frac{81}{\left(18-15\right)^{2}}-\left(2^{2}\times 3-2\times 5\right)
Multiply 3 and 5 to get 15.
\frac{81}{3^{2}}-\left(2^{2}\times 3-2\times 5\right)
Subtract 15 from 18 to get 3.
\frac{81}{9}-\left(2^{2}\times 3-2\times 5\right)
Calculate 3 to the power of 2 and get 9.
9-\left(2^{2}\times 3-2\times 5\right)
Divide 81 by 9 to get 9.
9-\left(4\times 3-2\times 5\right)
Calculate 2 to the power of 2 and get 4.
9-\left(12-2\times 5\right)
Multiply 4 and 3 to get 12.
9-\left(12-10\right)
Multiply 2 and 5 to get 10.
9-2
Subtract 10 from 12 to get 2.
7
Subtract 2 from 9 to get 7.