Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(125\times 8a^{2}\right)^{\frac{1}{3}}\times 2^{-5}
Calculate 5 to the power of 3 and get 125.
\left(1000a^{2}\right)^{\frac{1}{3}}\times 2^{-5}
Multiply 125 and 8 to get 1000.
1000^{\frac{1}{3}}\left(a^{2}\right)^{\frac{1}{3}}\times 2^{-5}
Expand \left(1000a^{2}\right)^{\frac{1}{3}}.
1000^{\frac{1}{3}}a^{\frac{2}{3}}\times 2^{-5}
To raise a power to another power, multiply the exponents. Multiply 2 and \frac{1}{3} to get \frac{2}{3}.
10a^{\frac{2}{3}}\times 2^{-5}
Calculate 1000 to the power of \frac{1}{3} and get 10.
10a^{\frac{2}{3}}\times \frac{1}{32}
Calculate 2 to the power of -5 and get \frac{1}{32}.
\frac{5}{16}a^{\frac{2}{3}}
Multiply 10 and \frac{1}{32} to get \frac{5}{16}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(125\times 8a^{2}\right)^{\frac{1}{3}}\times 2^{-5})
Calculate 5 to the power of 3 and get 125.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(1000a^{2}\right)^{\frac{1}{3}}\times 2^{-5})
Multiply 125 and 8 to get 1000.
\frac{\mathrm{d}}{\mathrm{d}a}(1000^{\frac{1}{3}}\left(a^{2}\right)^{\frac{1}{3}}\times 2^{-5})
Expand \left(1000a^{2}\right)^{\frac{1}{3}}.
\frac{\mathrm{d}}{\mathrm{d}a}(1000^{\frac{1}{3}}a^{\frac{2}{3}}\times 2^{-5})
To raise a power to another power, multiply the exponents. Multiply 2 and \frac{1}{3} to get \frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(10a^{\frac{2}{3}}\times 2^{-5})
Calculate 1000 to the power of \frac{1}{3} and get 10.
\frac{\mathrm{d}}{\mathrm{d}a}(10a^{\frac{2}{3}}\times \frac{1}{32})
Calculate 2 to the power of -5 and get \frac{1}{32}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{5}{16}a^{\frac{2}{3}})
Multiply 10 and \frac{1}{32} to get \frac{5}{16}.
\frac{2}{3}\times \frac{5}{16}a^{\frac{2}{3}-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{5}{24}a^{\frac{2}{3}-1}
Multiply \frac{2}{3} times \frac{5}{16} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{5}{24}a^{-\frac{1}{3}}
Subtract 1 from \frac{2}{3}.