Solve for x
x=1.4
x=-11.4
Graph
Share
Copied to clipboard
25+10x+x^{2}+4.8^{2}=8^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+x\right)^{2}.
25+10x+x^{2}+23.04=8^{2}
Calculate 4.8 to the power of 2 and get 23.04.
48.04+10x+x^{2}=8^{2}
Add 25 and 23.04 to get 48.04.
48.04+10x+x^{2}=64
Calculate 8 to the power of 2 and get 64.
48.04+10x+x^{2}-64=0
Subtract 64 from both sides.
-15.96+10x+x^{2}=0
Subtract 64 from 48.04 to get -15.96.
x^{2}+10x-15.96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-15.96\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and -15.96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-15.96\right)}}{2}
Square 10.
x=\frac{-10±\sqrt{100+63.84}}{2}
Multiply -4 times -15.96.
x=\frac{-10±\sqrt{163.84}}{2}
Add 100 to 63.84.
x=\frac{-10±\frac{64}{5}}{2}
Take the square root of 163.84.
x=\frac{\frac{14}{5}}{2}
Now solve the equation x=\frac{-10±\frac{64}{5}}{2} when ± is plus. Add -10 to \frac{64}{5}.
x=\frac{7}{5}
Divide \frac{14}{5} by 2.
x=-\frac{\frac{114}{5}}{2}
Now solve the equation x=\frac{-10±\frac{64}{5}}{2} when ± is minus. Subtract \frac{64}{5} from -10.
x=-\frac{57}{5}
Divide -\frac{114}{5} by 2.
x=\frac{7}{5} x=-\frac{57}{5}
The equation is now solved.
25+10x+x^{2}+4.8^{2}=8^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+x\right)^{2}.
25+10x+x^{2}+23.04=8^{2}
Calculate 4.8 to the power of 2 and get 23.04.
48.04+10x+x^{2}=8^{2}
Add 25 and 23.04 to get 48.04.
48.04+10x+x^{2}=64
Calculate 8 to the power of 2 and get 64.
10x+x^{2}=64-48.04
Subtract 48.04 from both sides.
10x+x^{2}=15.96
Subtract 48.04 from 64 to get 15.96.
x^{2}+10x=15.96
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+10x+5^{2}=15.96+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=15.96+25
Square 5.
x^{2}+10x+25=40.96
Add 15.96 to 25.
\left(x+5\right)^{2}=40.96
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{40.96}
Take the square root of both sides of the equation.
x+5=\frac{32}{5} x+5=-\frac{32}{5}
Simplify.
x=\frac{7}{5} x=-\frac{57}{5}
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}