Evaluate
-8+50i
Real Part
-8
Share
Copied to clipboard
5\left(-2\right)+5\times \left(8i\right)+2i\left(-2\right)+2\times 8i^{2}+\left(3-i\right)\left(4+6i\right)
Multiply complex numbers 5+2i and -2+8i like you multiply binomials.
5\left(-2\right)+5\times \left(8i\right)+2i\left(-2\right)+2\times 8\left(-1\right)+\left(3-i\right)\left(4+6i\right)
By definition, i^{2} is -1.
-10+40i-4i-16+\left(3-i\right)\left(4+6i\right)
Do the multiplications in 5\left(-2\right)+5\times \left(8i\right)+2i\left(-2\right)+2\times 8\left(-1\right).
-10-16+\left(40-4\right)i+\left(3-i\right)\left(4+6i\right)
Combine the real and imaginary parts in -10+40i-4i-16.
-26+36i+\left(3-i\right)\left(4+6i\right)
Do the additions in -10-16+\left(40-4\right)i.
-26+36i+3\times 4+3\times \left(6i\right)-i\times 4-6i^{2}
Multiply complex numbers 3-i and 4+6i like you multiply binomials.
-26+36i+3\times 4+3\times \left(6i\right)-i\times 4-6\left(-1\right)
By definition, i^{2} is -1.
-26+36i+12+18i-4i+6
Do the multiplications in 3\times 4+3\times \left(6i\right)-i\times 4-6\left(-1\right).
-26+36i+12+6+\left(18-4\right)i
Combine the real and imaginary parts in 12+18i-4i+6.
-26+36i+\left(18+14i\right)
Do the additions in 12+6+\left(18-4\right)i.
-26+18+\left(36+14\right)i
Combine the real and imaginary parts.
-8+50i
Do the additions.
Re(5\left(-2\right)+5\times \left(8i\right)+2i\left(-2\right)+2\times 8i^{2}+\left(3-i\right)\left(4+6i\right))
Multiply complex numbers 5+2i and -2+8i like you multiply binomials.
Re(5\left(-2\right)+5\times \left(8i\right)+2i\left(-2\right)+2\times 8\left(-1\right)+\left(3-i\right)\left(4+6i\right))
By definition, i^{2} is -1.
Re(-10+40i-4i-16+\left(3-i\right)\left(4+6i\right))
Do the multiplications in 5\left(-2\right)+5\times \left(8i\right)+2i\left(-2\right)+2\times 8\left(-1\right).
Re(-10-16+\left(40-4\right)i+\left(3-i\right)\left(4+6i\right))
Combine the real and imaginary parts in -10+40i-4i-16.
Re(-26+36i+\left(3-i\right)\left(4+6i\right))
Do the additions in -10-16+\left(40-4\right)i.
Re(-26+36i+3\times 4+3\times \left(6i\right)-i\times 4-6i^{2})
Multiply complex numbers 3-i and 4+6i like you multiply binomials.
Re(-26+36i+3\times 4+3\times \left(6i\right)-i\times 4-6\left(-1\right))
By definition, i^{2} is -1.
Re(-26+36i+12+18i-4i+6)
Do the multiplications in 3\times 4+3\times \left(6i\right)-i\times 4-6\left(-1\right).
Re(-26+36i+12+6+\left(18-4\right)i)
Combine the real and imaginary parts in 12+18i-4i+6.
Re(-26+36i+\left(18+14i\right))
Do the additions in 12+6+\left(18-4\right)i.
Re(-26+18+\left(36+14\right)i)
Combine the real and imaginary parts in -26+36i+18+14i.
Re(-8+50i)
Do the additions in -26+18+\left(36+14\right)i.
-8
The real part of -8+50i is -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}