Solve for k
k=\sqrt{397}-4\approx 15.924858845
k=-\sqrt{397}-4\approx -23.924858845
Share
Copied to clipboard
2304-48k-6k^{2}=18
Use the distributive property to multiply 48+2k by 48-3k and combine like terms.
2304-48k-6k^{2}-18=0
Subtract 18 from both sides.
2286-48k-6k^{2}=0
Subtract 18 from 2304 to get 2286.
-6k^{2}-48k+2286=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-6\right)\times 2286}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -48 for b, and 2286 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-48\right)±\sqrt{2304-4\left(-6\right)\times 2286}}{2\left(-6\right)}
Square -48.
k=\frac{-\left(-48\right)±\sqrt{2304+24\times 2286}}{2\left(-6\right)}
Multiply -4 times -6.
k=\frac{-\left(-48\right)±\sqrt{2304+54864}}{2\left(-6\right)}
Multiply 24 times 2286.
k=\frac{-\left(-48\right)±\sqrt{57168}}{2\left(-6\right)}
Add 2304 to 54864.
k=\frac{-\left(-48\right)±12\sqrt{397}}{2\left(-6\right)}
Take the square root of 57168.
k=\frac{48±12\sqrt{397}}{2\left(-6\right)}
The opposite of -48 is 48.
k=\frac{48±12\sqrt{397}}{-12}
Multiply 2 times -6.
k=\frac{12\sqrt{397}+48}{-12}
Now solve the equation k=\frac{48±12\sqrt{397}}{-12} when ± is plus. Add 48 to 12\sqrt{397}.
k=-\left(\sqrt{397}+4\right)
Divide 48+12\sqrt{397} by -12.
k=\frac{48-12\sqrt{397}}{-12}
Now solve the equation k=\frac{48±12\sqrt{397}}{-12} when ± is minus. Subtract 12\sqrt{397} from 48.
k=\sqrt{397}-4
Divide 48-12\sqrt{397} by -12.
k=-\left(\sqrt{397}+4\right) k=\sqrt{397}-4
The equation is now solved.
2304-48k-6k^{2}=18
Use the distributive property to multiply 48+2k by 48-3k and combine like terms.
-48k-6k^{2}=18-2304
Subtract 2304 from both sides.
-48k-6k^{2}=-2286
Subtract 2304 from 18 to get -2286.
-6k^{2}-48k=-2286
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6k^{2}-48k}{-6}=-\frac{2286}{-6}
Divide both sides by -6.
k^{2}+\left(-\frac{48}{-6}\right)k=-\frac{2286}{-6}
Dividing by -6 undoes the multiplication by -6.
k^{2}+8k=-\frac{2286}{-6}
Divide -48 by -6.
k^{2}+8k=381
Divide -2286 by -6.
k^{2}+8k+4^{2}=381+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+8k+16=381+16
Square 4.
k^{2}+8k+16=397
Add 381 to 16.
\left(k+4\right)^{2}=397
Factor k^{2}+8k+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+4\right)^{2}}=\sqrt{397}
Take the square root of both sides of the equation.
k+4=\sqrt{397} k+4=-\sqrt{397}
Simplify.
k=\sqrt{397}-4 k=-\sqrt{397}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}