Solve for t
t=\frac{\sqrt{30}}{5}+10\approx 11.095445115
t=-\frac{\sqrt{30}}{5}+10\approx 8.904554885
Share
Copied to clipboard
1600-320t+16t^{2}+\left(30-3t\right)^{2}=30
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-4t\right)^{2}.
1600-320t+16t^{2}+900-180t+9t^{2}=30
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(30-3t\right)^{2}.
2500-320t+16t^{2}-180t+9t^{2}=30
Add 1600 and 900 to get 2500.
2500-500t+16t^{2}+9t^{2}=30
Combine -320t and -180t to get -500t.
2500-500t+25t^{2}=30
Combine 16t^{2} and 9t^{2} to get 25t^{2}.
2500-500t+25t^{2}-30=0
Subtract 30 from both sides.
2470-500t+25t^{2}=0
Subtract 30 from 2500 to get 2470.
25t^{2}-500t+2470=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-500\right)±\sqrt{\left(-500\right)^{2}-4\times 25\times 2470}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -500 for b, and 2470 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-500\right)±\sqrt{250000-4\times 25\times 2470}}{2\times 25}
Square -500.
t=\frac{-\left(-500\right)±\sqrt{250000-100\times 2470}}{2\times 25}
Multiply -4 times 25.
t=\frac{-\left(-500\right)±\sqrt{250000-247000}}{2\times 25}
Multiply -100 times 2470.
t=\frac{-\left(-500\right)±\sqrt{3000}}{2\times 25}
Add 250000 to -247000.
t=\frac{-\left(-500\right)±10\sqrt{30}}{2\times 25}
Take the square root of 3000.
t=\frac{500±10\sqrt{30}}{2\times 25}
The opposite of -500 is 500.
t=\frac{500±10\sqrt{30}}{50}
Multiply 2 times 25.
t=\frac{10\sqrt{30}+500}{50}
Now solve the equation t=\frac{500±10\sqrt{30}}{50} when ± is plus. Add 500 to 10\sqrt{30}.
t=\frac{\sqrt{30}}{5}+10
Divide 500+10\sqrt{30} by 50.
t=\frac{500-10\sqrt{30}}{50}
Now solve the equation t=\frac{500±10\sqrt{30}}{50} when ± is minus. Subtract 10\sqrt{30} from 500.
t=-\frac{\sqrt{30}}{5}+10
Divide 500-10\sqrt{30} by 50.
t=\frac{\sqrt{30}}{5}+10 t=-\frac{\sqrt{30}}{5}+10
The equation is now solved.
1600-320t+16t^{2}+\left(30-3t\right)^{2}=30
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-4t\right)^{2}.
1600-320t+16t^{2}+900-180t+9t^{2}=30
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(30-3t\right)^{2}.
2500-320t+16t^{2}-180t+9t^{2}=30
Add 1600 and 900 to get 2500.
2500-500t+16t^{2}+9t^{2}=30
Combine -320t and -180t to get -500t.
2500-500t+25t^{2}=30
Combine 16t^{2} and 9t^{2} to get 25t^{2}.
-500t+25t^{2}=30-2500
Subtract 2500 from both sides.
-500t+25t^{2}=-2470
Subtract 2500 from 30 to get -2470.
25t^{2}-500t=-2470
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25t^{2}-500t}{25}=-\frac{2470}{25}
Divide both sides by 25.
t^{2}+\left(-\frac{500}{25}\right)t=-\frac{2470}{25}
Dividing by 25 undoes the multiplication by 25.
t^{2}-20t=-\frac{2470}{25}
Divide -500 by 25.
t^{2}-20t=-\frac{494}{5}
Reduce the fraction \frac{-2470}{25} to lowest terms by extracting and canceling out 5.
t^{2}-20t+\left(-10\right)^{2}=-\frac{494}{5}+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-20t+100=-\frac{494}{5}+100
Square -10.
t^{2}-20t+100=\frac{6}{5}
Add -\frac{494}{5} to 100.
\left(t-10\right)^{2}=\frac{6}{5}
Factor t^{2}-20t+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-10\right)^{2}}=\sqrt{\frac{6}{5}}
Take the square root of both sides of the equation.
t-10=\frac{\sqrt{30}}{5} t-10=-\frac{\sqrt{30}}{5}
Simplify.
t=\frac{\sqrt{30}}{5}+10 t=-\frac{\sqrt{30}}{5}+10
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}