Solve for x
x=10
x=50
Graph
Share
Copied to clipboard
2000+30x-\frac{1}{2}x^{2}=2250
Use the distributive property to multiply 40+x by 50-\frac{1}{2}x and combine like terms.
2000+30x-\frac{1}{2}x^{2}-2250=0
Subtract 2250 from both sides.
-250+30x-\frac{1}{2}x^{2}=0
Subtract 2250 from 2000 to get -250.
-\frac{1}{2}x^{2}+30x-250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-\frac{1}{2}\right)\left(-250\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 30 for b, and -250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-\frac{1}{2}\right)\left(-250\right)}}{2\left(-\frac{1}{2}\right)}
Square 30.
x=\frac{-30±\sqrt{900+2\left(-250\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-30±\sqrt{900-500}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -250.
x=\frac{-30±\sqrt{400}}{2\left(-\frac{1}{2}\right)}
Add 900 to -500.
x=\frac{-30±20}{2\left(-\frac{1}{2}\right)}
Take the square root of 400.
x=\frac{-30±20}{-1}
Multiply 2 times -\frac{1}{2}.
x=-\frac{10}{-1}
Now solve the equation x=\frac{-30±20}{-1} when ± is plus. Add -30 to 20.
x=10
Divide -10 by -1.
x=-\frac{50}{-1}
Now solve the equation x=\frac{-30±20}{-1} when ± is minus. Subtract 20 from -30.
x=50
Divide -50 by -1.
x=10 x=50
The equation is now solved.
2000+30x-\frac{1}{2}x^{2}=2250
Use the distributive property to multiply 40+x by 50-\frac{1}{2}x and combine like terms.
30x-\frac{1}{2}x^{2}=2250-2000
Subtract 2000 from both sides.
30x-\frac{1}{2}x^{2}=250
Subtract 2000 from 2250 to get 250.
-\frac{1}{2}x^{2}+30x=250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+30x}{-\frac{1}{2}}=\frac{250}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{30}{-\frac{1}{2}}x=\frac{250}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-60x=\frac{250}{-\frac{1}{2}}
Divide 30 by -\frac{1}{2} by multiplying 30 by the reciprocal of -\frac{1}{2}.
x^{2}-60x=-500
Divide 250 by -\frac{1}{2} by multiplying 250 by the reciprocal of -\frac{1}{2}.
x^{2}-60x+\left(-30\right)^{2}=-500+\left(-30\right)^{2}
Divide -60, the coefficient of the x term, by 2 to get -30. Then add the square of -30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-60x+900=-500+900
Square -30.
x^{2}-60x+900=400
Add -500 to 900.
\left(x-30\right)^{2}=400
Factor x^{2}-60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-30\right)^{2}}=\sqrt{400}
Take the square root of both sides of the equation.
x-30=20 x-30=-20
Simplify.
x=50 x=10
Add 30 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}