Solve for x
x=2\sqrt{1070}-40\approx 25.421708935
x=-2\sqrt{1070}-40\approx -105.421708935
Graph
Share
Copied to clipboard
120x+2400+\frac{3}{2}x^{2}=6420
Use the distributive property to multiply 40+x by \frac{3}{2}x+60 and combine like terms.
120x+2400+\frac{3}{2}x^{2}-6420=0
Subtract 6420 from both sides.
120x-4020+\frac{3}{2}x^{2}=0
Subtract 6420 from 2400 to get -4020.
\frac{3}{2}x^{2}+120x-4020=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-120±\sqrt{120^{2}-4\times \frac{3}{2}\left(-4020\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, 120 for b, and -4020 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\times \frac{3}{2}\left(-4020\right)}}{2\times \frac{3}{2}}
Square 120.
x=\frac{-120±\sqrt{14400-6\left(-4020\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{-120±\sqrt{14400+24120}}{2\times \frac{3}{2}}
Multiply -6 times -4020.
x=\frac{-120±\sqrt{38520}}{2\times \frac{3}{2}}
Add 14400 to 24120.
x=\frac{-120±6\sqrt{1070}}{2\times \frac{3}{2}}
Take the square root of 38520.
x=\frac{-120±6\sqrt{1070}}{3}
Multiply 2 times \frac{3}{2}.
x=\frac{6\sqrt{1070}-120}{3}
Now solve the equation x=\frac{-120±6\sqrt{1070}}{3} when ± is plus. Add -120 to 6\sqrt{1070}.
x=2\sqrt{1070}-40
Divide -120+6\sqrt{1070} by 3.
x=\frac{-6\sqrt{1070}-120}{3}
Now solve the equation x=\frac{-120±6\sqrt{1070}}{3} when ± is minus. Subtract 6\sqrt{1070} from -120.
x=-2\sqrt{1070}-40
Divide -120-6\sqrt{1070} by 3.
x=2\sqrt{1070}-40 x=-2\sqrt{1070}-40
The equation is now solved.
120x+2400+\frac{3}{2}x^{2}=6420
Use the distributive property to multiply 40+x by \frac{3}{2}x+60 and combine like terms.
120x+\frac{3}{2}x^{2}=6420-2400
Subtract 2400 from both sides.
120x+\frac{3}{2}x^{2}=4020
Subtract 2400 from 6420 to get 4020.
\frac{3}{2}x^{2}+120x=4020
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{2}x^{2}+120x}{\frac{3}{2}}=\frac{4020}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{120}{\frac{3}{2}}x=\frac{4020}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}+80x=\frac{4020}{\frac{3}{2}}
Divide 120 by \frac{3}{2} by multiplying 120 by the reciprocal of \frac{3}{2}.
x^{2}+80x=2680
Divide 4020 by \frac{3}{2} by multiplying 4020 by the reciprocal of \frac{3}{2}.
x^{2}+80x+40^{2}=2680+40^{2}
Divide 80, the coefficient of the x term, by 2 to get 40. Then add the square of 40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+80x+1600=2680+1600
Square 40.
x^{2}+80x+1600=4280
Add 2680 to 1600.
\left(x+40\right)^{2}=4280
Factor x^{2}+80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+40\right)^{2}}=\sqrt{4280}
Take the square root of both sides of the equation.
x+40=2\sqrt{1070} x+40=-2\sqrt{1070}
Simplify.
x=2\sqrt{1070}-40 x=-2\sqrt{1070}-40
Subtract 40 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}