Factor
4\left(y-2\right)\left(y+3\right)
Evaluate
4\left(y-2\right)\left(y+3\right)
Graph
Share
Copied to clipboard
4\left(y^{2}+y-6\right)
Factor out 4.
a+b=1 ab=1\left(-6\right)=-6
Consider y^{2}+y-6. Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by-6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=-2 b=3
The solution is the pair that gives sum 1.
\left(y^{2}-2y\right)+\left(3y-6\right)
Rewrite y^{2}+y-6 as \left(y^{2}-2y\right)+\left(3y-6\right).
y\left(y-2\right)+3\left(y-2\right)
Factor out y in the first and 3 in the second group.
\left(y-2\right)\left(y+3\right)
Factor out common term y-2 by using distributive property.
4\left(y-2\right)\left(y+3\right)
Rewrite the complete factored expression.
4y^{2}+4y-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-4±\sqrt{4^{2}-4\times 4\left(-24\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-4±\sqrt{16-4\times 4\left(-24\right)}}{2\times 4}
Square 4.
y=\frac{-4±\sqrt{16-16\left(-24\right)}}{2\times 4}
Multiply -4 times 4.
y=\frac{-4±\sqrt{16+384}}{2\times 4}
Multiply -16 times -24.
y=\frac{-4±\sqrt{400}}{2\times 4}
Add 16 to 384.
y=\frac{-4±20}{2\times 4}
Take the square root of 400.
y=\frac{-4±20}{8}
Multiply 2 times 4.
y=\frac{16}{8}
Now solve the equation y=\frac{-4±20}{8} when ± is plus. Add -4 to 20.
y=2
Divide 16 by 8.
y=-\frac{24}{8}
Now solve the equation y=\frac{-4±20}{8} when ± is minus. Subtract 20 from -4.
y=-3
Divide -24 by 8.
4y^{2}+4y-24=4\left(y-2\right)\left(y-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -3 for x_{2}.
4y^{2}+4y-24=4\left(y-2\right)\left(y+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}