Solve for x
x=-3
x=\frac{3}{5}=0.6
Graph
Share
Copied to clipboard
4x^{3}+x^{2}+9x-9=\left(2x+1\right)\left(2x^{2}-3x\right)
Use the distributive property to multiply 4x-3 by x^{2}+x+3 and combine like terms.
4x^{3}+x^{2}+9x-9=4x^{3}-4x^{2}-3x
Use the distributive property to multiply 2x+1 by 2x^{2}-3x and combine like terms.
4x^{3}+x^{2}+9x-9-4x^{3}=-4x^{2}-3x
Subtract 4x^{3} from both sides.
x^{2}+9x-9=-4x^{2}-3x
Combine 4x^{3} and -4x^{3} to get 0.
x^{2}+9x-9+4x^{2}=-3x
Add 4x^{2} to both sides.
5x^{2}+9x-9=-3x
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+9x-9+3x=0
Add 3x to both sides.
5x^{2}+12x-9=0
Combine 9x and 3x to get 12x.
a+b=12 ab=5\left(-9\right)=-45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
-1,45 -3,15 -5,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -45.
-1+45=44 -3+15=12 -5+9=4
Calculate the sum for each pair.
a=-3 b=15
The solution is the pair that gives sum 12.
\left(5x^{2}-3x\right)+\left(15x-9\right)
Rewrite 5x^{2}+12x-9 as \left(5x^{2}-3x\right)+\left(15x-9\right).
x\left(5x-3\right)+3\left(5x-3\right)
Factor out x in the first and 3 in the second group.
\left(5x-3\right)\left(x+3\right)
Factor out common term 5x-3 by using distributive property.
x=\frac{3}{5} x=-3
To find equation solutions, solve 5x-3=0 and x+3=0.
4x^{3}+x^{2}+9x-9=\left(2x+1\right)\left(2x^{2}-3x\right)
Use the distributive property to multiply 4x-3 by x^{2}+x+3 and combine like terms.
4x^{3}+x^{2}+9x-9=4x^{3}-4x^{2}-3x
Use the distributive property to multiply 2x+1 by 2x^{2}-3x and combine like terms.
4x^{3}+x^{2}+9x-9-4x^{3}=-4x^{2}-3x
Subtract 4x^{3} from both sides.
x^{2}+9x-9=-4x^{2}-3x
Combine 4x^{3} and -4x^{3} to get 0.
x^{2}+9x-9+4x^{2}=-3x
Add 4x^{2} to both sides.
5x^{2}+9x-9=-3x
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+9x-9+3x=0
Add 3x to both sides.
5x^{2}+12x-9=0
Combine 9x and 3x to get 12x.
x=\frac{-12±\sqrt{12^{2}-4\times 5\left(-9\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 12 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 5\left(-9\right)}}{2\times 5}
Square 12.
x=\frac{-12±\sqrt{144-20\left(-9\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-12±\sqrt{144+180}}{2\times 5}
Multiply -20 times -9.
x=\frac{-12±\sqrt{324}}{2\times 5}
Add 144 to 180.
x=\frac{-12±18}{2\times 5}
Take the square root of 324.
x=\frac{-12±18}{10}
Multiply 2 times 5.
x=\frac{6}{10}
Now solve the equation x=\frac{-12±18}{10} when ± is plus. Add -12 to 18.
x=\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{10}
Now solve the equation x=\frac{-12±18}{10} when ± is minus. Subtract 18 from -12.
x=-3
Divide -30 by 10.
x=\frac{3}{5} x=-3
The equation is now solved.
4x^{3}+x^{2}+9x-9=\left(2x+1\right)\left(2x^{2}-3x\right)
Use the distributive property to multiply 4x-3 by x^{2}+x+3 and combine like terms.
4x^{3}+x^{2}+9x-9=4x^{3}-4x^{2}-3x
Use the distributive property to multiply 2x+1 by 2x^{2}-3x and combine like terms.
4x^{3}+x^{2}+9x-9-4x^{3}=-4x^{2}-3x
Subtract 4x^{3} from both sides.
x^{2}+9x-9=-4x^{2}-3x
Combine 4x^{3} and -4x^{3} to get 0.
x^{2}+9x-9+4x^{2}=-3x
Add 4x^{2} to both sides.
5x^{2}+9x-9=-3x
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+9x-9+3x=0
Add 3x to both sides.
5x^{2}+12x-9=0
Combine 9x and 3x to get 12x.
5x^{2}+12x=9
Add 9 to both sides. Anything plus zero gives itself.
\frac{5x^{2}+12x}{5}=\frac{9}{5}
Divide both sides by 5.
x^{2}+\frac{12}{5}x=\frac{9}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=\frac{9}{5}+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{9}{5}+\frac{36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{81}{25}
Add \frac{9}{5} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{5}\right)^{2}=\frac{81}{25}
Factor x^{2}+\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Take the square root of both sides of the equation.
x+\frac{6}{5}=\frac{9}{5} x+\frac{6}{5}=-\frac{9}{5}
Simplify.
x=\frac{3}{5} x=-3
Subtract \frac{6}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}