Solve for x
x=\frac{1}{8}=0.125
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
16x^{2}-24x+9-2\left(x+3\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9-2x-6=0
Use the distributive property to multiply -2 by x+3.
16x^{2}-26x+9-6=0
Combine -24x and -2x to get -26x.
16x^{2}-26x+3=0
Subtract 6 from 9 to get 3.
a+b=-26 ab=16\times 3=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 16x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Calculate the sum for each pair.
a=-24 b=-2
The solution is the pair that gives sum -26.
\left(16x^{2}-24x\right)+\left(-2x+3\right)
Rewrite 16x^{2}-26x+3 as \left(16x^{2}-24x\right)+\left(-2x+3\right).
8x\left(2x-3\right)-\left(2x-3\right)
Factor out 8x in the first and -1 in the second group.
\left(2x-3\right)\left(8x-1\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=\frac{1}{8}
To find equation solutions, solve 2x-3=0 and 8x-1=0.
16x^{2}-24x+9-2\left(x+3\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9-2x-6=0
Use the distributive property to multiply -2 by x+3.
16x^{2}-26x+9-6=0
Combine -24x and -2x to get -26x.
16x^{2}-26x+3=0
Subtract 6 from 9 to get 3.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 16\times 3}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -26 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 16\times 3}}{2\times 16}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-64\times 3}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-26\right)±\sqrt{676-192}}{2\times 16}
Multiply -64 times 3.
x=\frac{-\left(-26\right)±\sqrt{484}}{2\times 16}
Add 676 to -192.
x=\frac{-\left(-26\right)±22}{2\times 16}
Take the square root of 484.
x=\frac{26±22}{2\times 16}
The opposite of -26 is 26.
x=\frac{26±22}{32}
Multiply 2 times 16.
x=\frac{48}{32}
Now solve the equation x=\frac{26±22}{32} when ± is plus. Add 26 to 22.
x=\frac{3}{2}
Reduce the fraction \frac{48}{32} to lowest terms by extracting and canceling out 16.
x=\frac{4}{32}
Now solve the equation x=\frac{26±22}{32} when ± is minus. Subtract 22 from 26.
x=\frac{1}{8}
Reduce the fraction \frac{4}{32} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=\frac{1}{8}
The equation is now solved.
16x^{2}-24x+9-2\left(x+3\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9-2x-6=0
Use the distributive property to multiply -2 by x+3.
16x^{2}-26x+9-6=0
Combine -24x and -2x to get -26x.
16x^{2}-26x+3=0
Subtract 6 from 9 to get 3.
16x^{2}-26x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{16x^{2}-26x}{16}=-\frac{3}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{26}{16}\right)x=-\frac{3}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{13}{8}x=-\frac{3}{16}
Reduce the fraction \frac{-26}{16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{13}{8}x+\left(-\frac{13}{16}\right)^{2}=-\frac{3}{16}+\left(-\frac{13}{16}\right)^{2}
Divide -\frac{13}{8}, the coefficient of the x term, by 2 to get -\frac{13}{16}. Then add the square of -\frac{13}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{8}x+\frac{169}{256}=-\frac{3}{16}+\frac{169}{256}
Square -\frac{13}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{8}x+\frac{169}{256}=\frac{121}{256}
Add -\frac{3}{16} to \frac{169}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{16}\right)^{2}=\frac{121}{256}
Factor x^{2}-\frac{13}{8}x+\frac{169}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{16}\right)^{2}}=\sqrt{\frac{121}{256}}
Take the square root of both sides of the equation.
x-\frac{13}{16}=\frac{11}{16} x-\frac{13}{16}=-\frac{11}{16}
Simplify.
x=\frac{3}{2} x=\frac{1}{8}
Add \frac{13}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}