Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-24x+9=\left(x+4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
16x^{2}-24x+9-x^{2}=8x+16
Subtract x^{2} from both sides.
15x^{2}-24x+9=8x+16
Combine 16x^{2} and -x^{2} to get 15x^{2}.
15x^{2}-24x+9-8x=16
Subtract 8x from both sides.
15x^{2}-32x+9=16
Combine -24x and -8x to get -32x.
15x^{2}-32x+9-16=0
Subtract 16 from both sides.
15x^{2}-32x-7=0
Subtract 16 from 9 to get -7.
a+b=-32 ab=15\left(-7\right)=-105
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 15x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
1,-105 3,-35 5,-21 7,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -105.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
Calculate the sum for each pair.
a=-35 b=3
The solution is the pair that gives sum -32.
\left(15x^{2}-35x\right)+\left(3x-7\right)
Rewrite 15x^{2}-32x-7 as \left(15x^{2}-35x\right)+\left(3x-7\right).
5x\left(3x-7\right)+3x-7
Factor out 5x in 15x^{2}-35x.
\left(3x-7\right)\left(5x+1\right)
Factor out common term 3x-7 by using distributive property.
x=\frac{7}{3} x=-\frac{1}{5}
To find equation solutions, solve 3x-7=0 and 5x+1=0.
16x^{2}-24x+9=\left(x+4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
16x^{2}-24x+9-x^{2}=8x+16
Subtract x^{2} from both sides.
15x^{2}-24x+9=8x+16
Combine 16x^{2} and -x^{2} to get 15x^{2}.
15x^{2}-24x+9-8x=16
Subtract 8x from both sides.
15x^{2}-32x+9=16
Combine -24x and -8x to get -32x.
15x^{2}-32x+9-16=0
Subtract 16 from both sides.
15x^{2}-32x-7=0
Subtract 16 from 9 to get -7.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 15\left(-7\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -32 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 15\left(-7\right)}}{2\times 15}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-60\left(-7\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-32\right)±\sqrt{1024+420}}{2\times 15}
Multiply -60 times -7.
x=\frac{-\left(-32\right)±\sqrt{1444}}{2\times 15}
Add 1024 to 420.
x=\frac{-\left(-32\right)±38}{2\times 15}
Take the square root of 1444.
x=\frac{32±38}{2\times 15}
The opposite of -32 is 32.
x=\frac{32±38}{30}
Multiply 2 times 15.
x=\frac{70}{30}
Now solve the equation x=\frac{32±38}{30} when ± is plus. Add 32 to 38.
x=\frac{7}{3}
Reduce the fraction \frac{70}{30} to lowest terms by extracting and canceling out 10.
x=-\frac{6}{30}
Now solve the equation x=\frac{32±38}{30} when ± is minus. Subtract 38 from 32.
x=-\frac{1}{5}
Reduce the fraction \frac{-6}{30} to lowest terms by extracting and canceling out 6.
x=\frac{7}{3} x=-\frac{1}{5}
The equation is now solved.
16x^{2}-24x+9=\left(x+4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
16x^{2}-24x+9-x^{2}=8x+16
Subtract x^{2} from both sides.
15x^{2}-24x+9=8x+16
Combine 16x^{2} and -x^{2} to get 15x^{2}.
15x^{2}-24x+9-8x=16
Subtract 8x from both sides.
15x^{2}-32x+9=16
Combine -24x and -8x to get -32x.
15x^{2}-32x=16-9
Subtract 9 from both sides.
15x^{2}-32x=7
Subtract 9 from 16 to get 7.
\frac{15x^{2}-32x}{15}=\frac{7}{15}
Divide both sides by 15.
x^{2}-\frac{32}{15}x=\frac{7}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-\frac{32}{15}x+\left(-\frac{16}{15}\right)^{2}=\frac{7}{15}+\left(-\frac{16}{15}\right)^{2}
Divide -\frac{32}{15}, the coefficient of the x term, by 2 to get -\frac{16}{15}. Then add the square of -\frac{16}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{15}x+\frac{256}{225}=\frac{7}{15}+\frac{256}{225}
Square -\frac{16}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{15}x+\frac{256}{225}=\frac{361}{225}
Add \frac{7}{15} to \frac{256}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{15}\right)^{2}=\frac{361}{225}
Factor x^{2}-\frac{32}{15}x+\frac{256}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{15}\right)^{2}}=\sqrt{\frac{361}{225}}
Take the square root of both sides of the equation.
x-\frac{16}{15}=\frac{19}{15} x-\frac{16}{15}=-\frac{19}{15}
Simplify.
x=\frac{7}{3} x=-\frac{1}{5}
Add \frac{16}{15} to both sides of the equation.