Solve for x
x=\frac{1}{6}\approx 0.166666667
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
16x^{2}-24x+9=\left(2x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9=4x^{2}+8x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
16x^{2}-24x+9-4x^{2}=8x+4
Subtract 4x^{2} from both sides.
12x^{2}-24x+9=8x+4
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}-24x+9-8x=4
Subtract 8x from both sides.
12x^{2}-32x+9=4
Combine -24x and -8x to get -32x.
12x^{2}-32x+9-4=0
Subtract 4 from both sides.
12x^{2}-32x+5=0
Subtract 4 from 9 to get 5.
a+b=-32 ab=12\times 5=60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 12x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 60.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Calculate the sum for each pair.
a=-30 b=-2
The solution is the pair that gives sum -32.
\left(12x^{2}-30x\right)+\left(-2x+5\right)
Rewrite 12x^{2}-32x+5 as \left(12x^{2}-30x\right)+\left(-2x+5\right).
6x\left(2x-5\right)-\left(2x-5\right)
Factor out 6x in the first and -1 in the second group.
\left(2x-5\right)\left(6x-1\right)
Factor out common term 2x-5 by using distributive property.
x=\frac{5}{2} x=\frac{1}{6}
To find equation solutions, solve 2x-5=0 and 6x-1=0.
16x^{2}-24x+9=\left(2x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9=4x^{2}+8x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
16x^{2}-24x+9-4x^{2}=8x+4
Subtract 4x^{2} from both sides.
12x^{2}-24x+9=8x+4
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}-24x+9-8x=4
Subtract 8x from both sides.
12x^{2}-32x+9=4
Combine -24x and -8x to get -32x.
12x^{2}-32x+9-4=0
Subtract 4 from both sides.
12x^{2}-32x+5=0
Subtract 4 from 9 to get 5.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 12\times 5}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -32 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 12\times 5}}{2\times 12}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-48\times 5}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-32\right)±\sqrt{1024-240}}{2\times 12}
Multiply -48 times 5.
x=\frac{-\left(-32\right)±\sqrt{784}}{2\times 12}
Add 1024 to -240.
x=\frac{-\left(-32\right)±28}{2\times 12}
Take the square root of 784.
x=\frac{32±28}{2\times 12}
The opposite of -32 is 32.
x=\frac{32±28}{24}
Multiply 2 times 12.
x=\frac{60}{24}
Now solve the equation x=\frac{32±28}{24} when ± is plus. Add 32 to 28.
x=\frac{5}{2}
Reduce the fraction \frac{60}{24} to lowest terms by extracting and canceling out 12.
x=\frac{4}{24}
Now solve the equation x=\frac{32±28}{24} when ± is minus. Subtract 28 from 32.
x=\frac{1}{6}
Reduce the fraction \frac{4}{24} to lowest terms by extracting and canceling out 4.
x=\frac{5}{2} x=\frac{1}{6}
The equation is now solved.
16x^{2}-24x+9=\left(2x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9=4x^{2}+8x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
16x^{2}-24x+9-4x^{2}=8x+4
Subtract 4x^{2} from both sides.
12x^{2}-24x+9=8x+4
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}-24x+9-8x=4
Subtract 8x from both sides.
12x^{2}-32x+9=4
Combine -24x and -8x to get -32x.
12x^{2}-32x=4-9
Subtract 9 from both sides.
12x^{2}-32x=-5
Subtract 9 from 4 to get -5.
\frac{12x^{2}-32x}{12}=-\frac{5}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{32}{12}\right)x=-\frac{5}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{8}{3}x=-\frac{5}{12}
Reduce the fraction \frac{-32}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{5}{12}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{5}{12}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{49}{36}
Add -\frac{5}{12} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=\frac{49}{36}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{7}{6} x-\frac{4}{3}=-\frac{7}{6}
Simplify.
x=\frac{5}{2} x=\frac{1}{6}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}