Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4x\right)^{2}-1-\left(4x+1-4\right)^{2}+4-1+8
Consider \left(4x-1\right)\left(4x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4^{2}x^{2}-1-\left(4x+1-4\right)^{2}+4-1+8
Expand \left(4x\right)^{2}.
16x^{2}-1-\left(4x+1-4\right)^{2}+4-1+8
Calculate 4 to the power of 2 and get 16.
16x^{2}-1-\left(4x-3\right)^{2}+4-1+8
Subtract 4 from 1 to get -3.
16x^{2}-1-\left(16x^{2}-24x+9\right)+4-1+8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-1-16x^{2}+24x-9+4-1+8
To find the opposite of 16x^{2}-24x+9, find the opposite of each term.
-1+24x-9+4-1+8
Combine 16x^{2} and -16x^{2} to get 0.
-10+24x+4-1+8
Subtract 9 from -1 to get -10.
-6+24x-1+8
Add -10 and 4 to get -6.
-7+24x+8
Subtract 1 from -6 to get -7.
1+24x
Add -7 and 8 to get 1.
\left(4x\right)^{2}-1-\left(4x+1-4\right)^{2}+4-1+8
Consider \left(4x-1\right)\left(4x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4^{2}x^{2}-1-\left(4x+1-4\right)^{2}+4-1+8
Expand \left(4x\right)^{2}.
16x^{2}-1-\left(4x+1-4\right)^{2}+4-1+8
Calculate 4 to the power of 2 and get 16.
16x^{2}-1-\left(4x-3\right)^{2}+4-1+8
Subtract 4 from 1 to get -3.
16x^{2}-1-\left(16x^{2}-24x+9\right)+4-1+8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-1-16x^{2}+24x-9+4-1+8
To find the opposite of 16x^{2}-24x+9, find the opposite of each term.
-1+24x-9+4-1+8
Combine 16x^{2} and -16x^{2} to get 0.
-10+24x+4-1+8
Subtract 9 from -1 to get -10.
-6+24x-1+8
Add -10 and 4 to get -6.
-7+24x+8
Subtract 1 from -6 to get -7.
1+24x
Add -7 and 8 to get 1.