Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{2}xy\left(8x^{2}-2y^{2}+3\right)}{-\frac{1}{2}xy}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}\left(8x^{2}-2y^{2}+3\right)}{-\frac{1}{2}}
Cancel out xy in both numerator and denominator.
\frac{4x^{2}-y^{2}+\frac{3}{2}}{-\frac{1}{2}}
Expand the expression.
\frac{\left(4x^{2}-y^{2}+\frac{3}{2}\right)\times 2}{-1}
Divide 4x^{2}-y^{2}+\frac{3}{2} by -\frac{1}{2} by multiplying 4x^{2}-y^{2}+\frac{3}{2} by the reciprocal of -\frac{1}{2}.
-\left(4x^{2}-y^{2}+\frac{3}{2}\right)\times 2
Anything divided by -1 gives its opposite.
-\left(8x^{2}-2y^{2}+3\right)
Use the distributive property to multiply 4x^{2}-y^{2}+\frac{3}{2} by 2.
-8x^{2}+2y^{2}-3
To find the opposite of 8x^{2}-2y^{2}+3, find the opposite of each term.
\frac{\frac{1}{2}xy\left(8x^{2}-2y^{2}+3\right)}{-\frac{1}{2}xy}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}\left(8x^{2}-2y^{2}+3\right)}{-\frac{1}{2}}
Cancel out xy in both numerator and denominator.
\frac{4x^{2}-y^{2}+\frac{3}{2}}{-\frac{1}{2}}
Expand the expression.
\frac{\left(4x^{2}-y^{2}+\frac{3}{2}\right)\times 2}{-1}
Divide 4x^{2}-y^{2}+\frac{3}{2} by -\frac{1}{2} by multiplying 4x^{2}-y^{2}+\frac{3}{2} by the reciprocal of -\frac{1}{2}.
-\left(4x^{2}-y^{2}+\frac{3}{2}\right)\times 2
Anything divided by -1 gives its opposite.
-\left(8x^{2}-2y^{2}+3\right)
Use the distributive property to multiply 4x^{2}-y^{2}+\frac{3}{2} by 2.
-8x^{2}+2y^{2}-3
To find the opposite of 8x^{2}-2y^{2}+3, find the opposite of each term.