Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-8x+3-5
Combine 4x^{2} and x^{2} to get 5x^{2}.
5x^{2}-8x-2
Subtract 5 from 3 to get -2.
factor(5x^{2}-8x+3-5)
Combine 4x^{2} and x^{2} to get 5x^{2}.
factor(5x^{2}-8x-2)
Subtract 5 from 3 to get -2.
5x^{2}-8x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\left(-2\right)}}{2\times 5}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-20\left(-2\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-8\right)±\sqrt{64+40}}{2\times 5}
Multiply -20 times -2.
x=\frac{-\left(-8\right)±\sqrt{104}}{2\times 5}
Add 64 to 40.
x=\frac{-\left(-8\right)±2\sqrt{26}}{2\times 5}
Take the square root of 104.
x=\frac{8±2\sqrt{26}}{2\times 5}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{26}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{26}+8}{10}
Now solve the equation x=\frac{8±2\sqrt{26}}{10} when ± is plus. Add 8 to 2\sqrt{26}.
x=\frac{\sqrt{26}+4}{5}
Divide 8+2\sqrt{26} by 10.
x=\frac{8-2\sqrt{26}}{10}
Now solve the equation x=\frac{8±2\sqrt{26}}{10} when ± is minus. Subtract 2\sqrt{26} from 8.
x=\frac{4-\sqrt{26}}{5}
Divide 8-2\sqrt{26} by 10.
5x^{2}-8x-2=5\left(x-\frac{\sqrt{26}+4}{5}\right)\left(x-\frac{4-\sqrt{26}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4+\sqrt{26}}{5} for x_{1} and \frac{4-\sqrt{26}}{5} for x_{2}.