Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+56x+49=\left(x-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+7\right)^{2}.
16x^{2}+56x+49=x^{2}-4x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
16x^{2}+56x+49-x^{2}=-4x+4
Subtract x^{2} from both sides.
15x^{2}+56x+49=-4x+4
Combine 16x^{2} and -x^{2} to get 15x^{2}.
15x^{2}+56x+49+4x=4
Add 4x to both sides.
15x^{2}+60x+49=4
Combine 56x and 4x to get 60x.
15x^{2}+60x+49-4=0
Subtract 4 from both sides.
15x^{2}+60x+45=0
Subtract 4 from 49 to get 45.
x^{2}+4x+3=0
Divide both sides by 15.
a+b=4 ab=1\times 3=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
a=1 b=3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(x^{2}+x\right)+\left(3x+3\right)
Rewrite x^{2}+4x+3 as \left(x^{2}+x\right)+\left(3x+3\right).
x\left(x+1\right)+3\left(x+1\right)
Factor out x in the first and 3 in the second group.
\left(x+1\right)\left(x+3\right)
Factor out common term x+1 by using distributive property.
x=-1 x=-3
To find equation solutions, solve x+1=0 and x+3=0.
16x^{2}+56x+49=\left(x-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+7\right)^{2}.
16x^{2}+56x+49=x^{2}-4x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
16x^{2}+56x+49-x^{2}=-4x+4
Subtract x^{2} from both sides.
15x^{2}+56x+49=-4x+4
Combine 16x^{2} and -x^{2} to get 15x^{2}.
15x^{2}+56x+49+4x=4
Add 4x to both sides.
15x^{2}+60x+49=4
Combine 56x and 4x to get 60x.
15x^{2}+60x+49-4=0
Subtract 4 from both sides.
15x^{2}+60x+45=0
Subtract 4 from 49 to get 45.
x=\frac{-60±\sqrt{60^{2}-4\times 15\times 45}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 60 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 15\times 45}}{2\times 15}
Square 60.
x=\frac{-60±\sqrt{3600-60\times 45}}{2\times 15}
Multiply -4 times 15.
x=\frac{-60±\sqrt{3600-2700}}{2\times 15}
Multiply -60 times 45.
x=\frac{-60±\sqrt{900}}{2\times 15}
Add 3600 to -2700.
x=\frac{-60±30}{2\times 15}
Take the square root of 900.
x=\frac{-60±30}{30}
Multiply 2 times 15.
x=-\frac{30}{30}
Now solve the equation x=\frac{-60±30}{30} when ± is plus. Add -60 to 30.
x=-1
Divide -30 by 30.
x=-\frac{90}{30}
Now solve the equation x=\frac{-60±30}{30} when ± is minus. Subtract 30 from -60.
x=-3
Divide -90 by 30.
x=-1 x=-3
The equation is now solved.
16x^{2}+56x+49=\left(x-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+7\right)^{2}.
16x^{2}+56x+49=x^{2}-4x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
16x^{2}+56x+49-x^{2}=-4x+4
Subtract x^{2} from both sides.
15x^{2}+56x+49=-4x+4
Combine 16x^{2} and -x^{2} to get 15x^{2}.
15x^{2}+56x+49+4x=4
Add 4x to both sides.
15x^{2}+60x+49=4
Combine 56x and 4x to get 60x.
15x^{2}+60x=4-49
Subtract 49 from both sides.
15x^{2}+60x=-45
Subtract 49 from 4 to get -45.
\frac{15x^{2}+60x}{15}=-\frac{45}{15}
Divide both sides by 15.
x^{2}+\frac{60}{15}x=-\frac{45}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}+4x=-\frac{45}{15}
Divide 60 by 15.
x^{2}+4x=-3
Divide -45 by 15.
x^{2}+4x+2^{2}=-3+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-3+4
Square 2.
x^{2}+4x+4=1
Add -3 to 4.
\left(x+2\right)^{2}=1
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+2=1 x+2=-1
Simplify.
x=-1 x=-3
Subtract 2 from both sides of the equation.