Solve for x
x=-\frac{\sqrt{3}i}{4}+\sqrt{6}\left(\frac{1}{8}+\frac{1}{8}i\right)-\frac{1}{2}\approx -0.193813782-0.126826484i
Share
Copied to clipboard
4x+3-\sqrt{3i}=\frac{\left(\sqrt{3}-3i\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}-3i}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4x+3-\sqrt{3i}=\frac{\left(\sqrt{3}-3i\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
4x+3-\sqrt{3i}=\frac{\left(\sqrt{3}\right)^{2}-3i\sqrt{3}}{3}
Use the distributive property to multiply \sqrt{3}-3i by \sqrt{3}.
4x+3-\sqrt{3i}=\frac{3-3i\sqrt{3}}{3}
The square of \sqrt{3} is 3.
4x+3-\sqrt{3i}=1-i\sqrt{3}
Divide each term of 3-3i\sqrt{3} by 3 to get 1-i\sqrt{3}.
4x-\sqrt{3i}=1-i\sqrt{3}-3
Subtract 3 from both sides.
4x-\sqrt{3i}=-2-i\sqrt{3}
Subtract 3 from 1 to get -2.
4x=-2-i\sqrt{3}+\sqrt{3i}
Add \sqrt{3i} to both sides.
4x=\sqrt{3i}-2-\sqrt{3}i
Reorder the terms.
4x=\sqrt{3i}-2-i\sqrt{3}
Multiply -1 and i to get -i.
4x=-\sqrt{3}i+\sqrt{3i}-2
Reorder the terms.
\frac{4x}{4}=\frac{\sqrt{6}\left(\frac{1}{2}+\frac{1}{2}i\right)-\sqrt{3}i-2}{4}
Divide both sides by 4.
x=\frac{\sqrt{6}\left(\frac{1}{2}+\frac{1}{2}i\right)-\sqrt{3}i-2}{4}
Dividing by 4 undoes the multiplication by 4.
x=-\frac{\sqrt{3}i}{4}+\sqrt{6}\left(\frac{1}{8}+\frac{1}{8}i\right)-\frac{1}{2}
Divide -2-i\sqrt{3}+\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt{6} by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}