Solve for x
x=-\frac{1}{2}=-0.5
x=-\frac{3}{4}=-0.75
Graph
Share
Copied to clipboard
16x^{2}+24x+9-\left(4x+3\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+3\right)^{2}.
16x^{2}+24x+9-4x-3=0
To find the opposite of 4x+3, find the opposite of each term.
16x^{2}+20x+9-3=0
Combine 24x and -4x to get 20x.
16x^{2}+20x+6=0
Subtract 3 from 9 to get 6.
8x^{2}+10x+3=0
Divide both sides by 2.
a+b=10 ab=8\times 3=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
1,24 2,12 3,8 4,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 24.
1+24=25 2+12=14 3+8=11 4+6=10
Calculate the sum for each pair.
a=4 b=6
The solution is the pair that gives sum 10.
\left(8x^{2}+4x\right)+\left(6x+3\right)
Rewrite 8x^{2}+10x+3 as \left(8x^{2}+4x\right)+\left(6x+3\right).
4x\left(2x+1\right)+3\left(2x+1\right)
Factor out 4x in the first and 3 in the second group.
\left(2x+1\right)\left(4x+3\right)
Factor out common term 2x+1 by using distributive property.
x=-\frac{1}{2} x=-\frac{3}{4}
To find equation solutions, solve 2x+1=0 and 4x+3=0.
16x^{2}+24x+9-\left(4x+3\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+3\right)^{2}.
16x^{2}+24x+9-4x-3=0
To find the opposite of 4x+3, find the opposite of each term.
16x^{2}+20x+9-3=0
Combine 24x and -4x to get 20x.
16x^{2}+20x+6=0
Subtract 3 from 9 to get 6.
x=\frac{-20±\sqrt{20^{2}-4\times 16\times 6}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 20 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 16\times 6}}{2\times 16}
Square 20.
x=\frac{-20±\sqrt{400-64\times 6}}{2\times 16}
Multiply -4 times 16.
x=\frac{-20±\sqrt{400-384}}{2\times 16}
Multiply -64 times 6.
x=\frac{-20±\sqrt{16}}{2\times 16}
Add 400 to -384.
x=\frac{-20±4}{2\times 16}
Take the square root of 16.
x=\frac{-20±4}{32}
Multiply 2 times 16.
x=-\frac{16}{32}
Now solve the equation x=\frac{-20±4}{32} when ± is plus. Add -20 to 4.
x=-\frac{1}{2}
Reduce the fraction \frac{-16}{32} to lowest terms by extracting and canceling out 16.
x=-\frac{24}{32}
Now solve the equation x=\frac{-20±4}{32} when ± is minus. Subtract 4 from -20.
x=-\frac{3}{4}
Reduce the fraction \frac{-24}{32} to lowest terms by extracting and canceling out 8.
x=-\frac{1}{2} x=-\frac{3}{4}
The equation is now solved.
16x^{2}+24x+9-\left(4x+3\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+3\right)^{2}.
16x^{2}+24x+9-4x-3=0
To find the opposite of 4x+3, find the opposite of each term.
16x^{2}+20x+9-3=0
Combine 24x and -4x to get 20x.
16x^{2}+20x+6=0
Subtract 3 from 9 to get 6.
16x^{2}+20x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{16x^{2}+20x}{16}=-\frac{6}{16}
Divide both sides by 16.
x^{2}+\frac{20}{16}x=-\frac{6}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{5}{4}x=-\frac{6}{16}
Reduce the fraction \frac{20}{16} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{5}{4}x=-\frac{3}{8}
Reduce the fraction \frac{-6}{16} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=-\frac{3}{8}+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{3}{8}+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{1}{64}
Add -\frac{3}{8} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{8}\right)^{2}=\frac{1}{64}
Factor x^{2}+\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Take the square root of both sides of the equation.
x+\frac{5}{8}=\frac{1}{8} x+\frac{5}{8}=-\frac{1}{8}
Simplify.
x=-\frac{1}{2} x=-\frac{3}{4}
Subtract \frac{5}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}