Solve for k
k=2
Share
Copied to clipboard
16k^{2}+16k+4-20\left(k^{2}+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4k+2\right)^{2}.
16k^{2}+16k+4-20k^{2}-20=0
Use the distributive property to multiply -20 by k^{2}+1.
-4k^{2}+16k+4-20=0
Combine 16k^{2} and -20k^{2} to get -4k^{2}.
-4k^{2}+16k-16=0
Subtract 20 from 4 to get -16.
-k^{2}+4k-4=0
Divide both sides by 4.
a+b=4 ab=-\left(-4\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -k^{2}+ak+bk-4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=2 b=2
The solution is the pair that gives sum 4.
\left(-k^{2}+2k\right)+\left(2k-4\right)
Rewrite -k^{2}+4k-4 as \left(-k^{2}+2k\right)+\left(2k-4\right).
-k\left(k-2\right)+2\left(k-2\right)
Factor out -k in the first and 2 in the second group.
\left(k-2\right)\left(-k+2\right)
Factor out common term k-2 by using distributive property.
k=2 k=2
To find equation solutions, solve k-2=0 and -k+2=0.
16k^{2}+16k+4-20\left(k^{2}+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4k+2\right)^{2}.
16k^{2}+16k+4-20k^{2}-20=0
Use the distributive property to multiply -20 by k^{2}+1.
-4k^{2}+16k+4-20=0
Combine 16k^{2} and -20k^{2} to get -4k^{2}.
-4k^{2}+16k-16=0
Subtract 20 from 4 to get -16.
k=\frac{-16±\sqrt{16^{2}-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 16 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-16±\sqrt{256-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
Square 16.
k=\frac{-16±\sqrt{256+16\left(-16\right)}}{2\left(-4\right)}
Multiply -4 times -4.
k=\frac{-16±\sqrt{256-256}}{2\left(-4\right)}
Multiply 16 times -16.
k=\frac{-16±\sqrt{0}}{2\left(-4\right)}
Add 256 to -256.
k=-\frac{16}{2\left(-4\right)}
Take the square root of 0.
k=-\frac{16}{-8}
Multiply 2 times -4.
k=2
Divide -16 by -8.
16k^{2}+16k+4-20\left(k^{2}+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4k+2\right)^{2}.
16k^{2}+16k+4-20k^{2}-20=0
Use the distributive property to multiply -20 by k^{2}+1.
-4k^{2}+16k+4-20=0
Combine 16k^{2} and -20k^{2} to get -4k^{2}.
-4k^{2}+16k-16=0
Subtract 20 from 4 to get -16.
-4k^{2}+16k=16
Add 16 to both sides. Anything plus zero gives itself.
\frac{-4k^{2}+16k}{-4}=\frac{16}{-4}
Divide both sides by -4.
k^{2}+\frac{16}{-4}k=\frac{16}{-4}
Dividing by -4 undoes the multiplication by -4.
k^{2}-4k=\frac{16}{-4}
Divide 16 by -4.
k^{2}-4k=-4
Divide 16 by -4.
k^{2}-4k+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-4k+4=-4+4
Square -2.
k^{2}-4k+4=0
Add -4 to 4.
\left(k-2\right)^{2}=0
Factor k^{2}-4k+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
k-2=0 k-2=0
Simplify.
k=2 k=2
Add 2 to both sides of the equation.
k=2
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}