Factor
\left(4a-7\right)\left(a+1\right)
Evaluate
\left(4a-7\right)\left(a+1\right)
Share
Copied to clipboard
p+q=-3 pq=4\left(-7\right)=-28
Factor the expression by grouping. First, the expression needs to be rewritten as 4a^{2}+pa+qa-7. To find p and q, set up a system to be solved.
1,-28 2,-14 4,-7
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -28.
1-28=-27 2-14=-12 4-7=-3
Calculate the sum for each pair.
p=-7 q=4
The solution is the pair that gives sum -3.
\left(4a^{2}-7a\right)+\left(4a-7\right)
Rewrite 4a^{2}-3a-7 as \left(4a^{2}-7a\right)+\left(4a-7\right).
a\left(4a-7\right)+4a-7
Factor out a in 4a^{2}-7a.
\left(4a-7\right)\left(a+1\right)
Factor out common term 4a-7 by using distributive property.
4a^{2}-3a-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-7\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-7\right)}}{2\times 4}
Square -3.
a=\frac{-\left(-3\right)±\sqrt{9-16\left(-7\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-\left(-3\right)±\sqrt{9+112}}{2\times 4}
Multiply -16 times -7.
a=\frac{-\left(-3\right)±\sqrt{121}}{2\times 4}
Add 9 to 112.
a=\frac{-\left(-3\right)±11}{2\times 4}
Take the square root of 121.
a=\frac{3±11}{2\times 4}
The opposite of -3 is 3.
a=\frac{3±11}{8}
Multiply 2 times 4.
a=\frac{14}{8}
Now solve the equation a=\frac{3±11}{8} when ± is plus. Add 3 to 11.
a=\frac{7}{4}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
a=-\frac{8}{8}
Now solve the equation a=\frac{3±11}{8} when ± is minus. Subtract 11 from 3.
a=-1
Divide -8 by 8.
4a^{2}-3a-7=4\left(a-\frac{7}{4}\right)\left(a-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{4} for x_{1} and -1 for x_{2}.
4a^{2}-3a-7=4\left(a-\frac{7}{4}\right)\left(a+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4a^{2}-3a-7=4\times \frac{4a-7}{4}\left(a+1\right)
Subtract \frac{7}{4} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4a^{2}-3a-7=\left(4a-7\right)\left(a+1\right)
Cancel out 4, the greatest common factor in 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}