Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(4-t\right)\left(\sqrt{3}+\frac{\sqrt{3}t}{2}\right)\times \frac{1}{2}
Express \frac{\sqrt{3}}{2}t as a single fraction.
\left(4-t\right)\left(\frac{2\sqrt{3}}{2}+\frac{\sqrt{3}t}{2}\right)\times \frac{1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
\left(4-t\right)\times \frac{2\sqrt{3}+\sqrt{3}t}{2}\times \frac{1}{2}
Since \frac{2\sqrt{3}}{2} and \frac{\sqrt{3}t}{2} have the same denominator, add them by adding their numerators.
\frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{2}\times \frac{1}{2}
Express \left(4-t\right)\times \frac{2\sqrt{3}+\sqrt{3}t}{2} as a single fraction.
\frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{2\times 2}
Multiply \frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{4}
Multiply 2 and 2 to get 4.
\frac{8\sqrt{3}+4\sqrt{3}t-2\sqrt{3}t-\sqrt{3}t^{2}}{4}
Apply the distributive property by multiplying each term of 4-t by each term of 2\sqrt{3}+\sqrt{3}t.
\frac{8\sqrt{3}+2\sqrt{3}t-\sqrt{3}t^{2}}{4}
Combine 4\sqrt{3}t and -2\sqrt{3}t to get 2\sqrt{3}t.