Evaluate
\frac{\sqrt{3}\left(4-t\right)\left(t+2\right)}{4}
Factor
\frac{\sqrt{3}\left(4-t\right)\left(t+2\right)}{4}
Share
Copied to clipboard
\left(4-t\right)\left(\sqrt{3}+\frac{\sqrt{3}t}{2}\right)\times \frac{1}{2}
Express \frac{\sqrt{3}}{2}t as a single fraction.
\left(4-t\right)\left(\frac{2\sqrt{3}}{2}+\frac{\sqrt{3}t}{2}\right)\times \frac{1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
\left(4-t\right)\times \frac{2\sqrt{3}+\sqrt{3}t}{2}\times \frac{1}{2}
Since \frac{2\sqrt{3}}{2} and \frac{\sqrt{3}t}{2} have the same denominator, add them by adding their numerators.
\frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{2}\times \frac{1}{2}
Express \left(4-t\right)\times \frac{2\sqrt{3}+\sqrt{3}t}{2} as a single fraction.
\frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{2\times 2}
Multiply \frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4-t\right)\left(2\sqrt{3}+\sqrt{3}t\right)}{4}
Multiply 2 and 2 to get 4.
\frac{8\sqrt{3}+4\sqrt{3}t-2\sqrt{3}t-\sqrt{3}t^{2}}{4}
Apply the distributive property by multiplying each term of 4-t by each term of 2\sqrt{3}+\sqrt{3}t.
\frac{8\sqrt{3}+2\sqrt{3}t-\sqrt{3}t^{2}}{4}
Combine 4\sqrt{3}t and -2\sqrt{3}t to get 2\sqrt{3}t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}