Solve for d
d = \frac{2 \sqrt{31} + 8}{5} \approx 3.827105745
d=\frac{8-2\sqrt{31}}{5}\approx -0.627105745
Share
Copied to clipboard
16+16d-5d^{2}=4
Use the distributive property to multiply 4-d by 4+5d and combine like terms.
16+16d-5d^{2}-4=0
Subtract 4 from both sides.
12+16d-5d^{2}=0
Subtract 4 from 16 to get 12.
-5d^{2}+16d+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-16±\sqrt{16^{2}-4\left(-5\right)\times 12}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 16 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-16±\sqrt{256-4\left(-5\right)\times 12}}{2\left(-5\right)}
Square 16.
d=\frac{-16±\sqrt{256+20\times 12}}{2\left(-5\right)}
Multiply -4 times -5.
d=\frac{-16±\sqrt{256+240}}{2\left(-5\right)}
Multiply 20 times 12.
d=\frac{-16±\sqrt{496}}{2\left(-5\right)}
Add 256 to 240.
d=\frac{-16±4\sqrt{31}}{2\left(-5\right)}
Take the square root of 496.
d=\frac{-16±4\sqrt{31}}{-10}
Multiply 2 times -5.
d=\frac{4\sqrt{31}-16}{-10}
Now solve the equation d=\frac{-16±4\sqrt{31}}{-10} when ± is plus. Add -16 to 4\sqrt{31}.
d=\frac{8-2\sqrt{31}}{5}
Divide -16+4\sqrt{31} by -10.
d=\frac{-4\sqrt{31}-16}{-10}
Now solve the equation d=\frac{-16±4\sqrt{31}}{-10} when ± is minus. Subtract 4\sqrt{31} from -16.
d=\frac{2\sqrt{31}+8}{5}
Divide -16-4\sqrt{31} by -10.
d=\frac{8-2\sqrt{31}}{5} d=\frac{2\sqrt{31}+8}{5}
The equation is now solved.
16+16d-5d^{2}=4
Use the distributive property to multiply 4-d by 4+5d and combine like terms.
16d-5d^{2}=4-16
Subtract 16 from both sides.
16d-5d^{2}=-12
Subtract 16 from 4 to get -12.
-5d^{2}+16d=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5d^{2}+16d}{-5}=-\frac{12}{-5}
Divide both sides by -5.
d^{2}+\frac{16}{-5}d=-\frac{12}{-5}
Dividing by -5 undoes the multiplication by -5.
d^{2}-\frac{16}{5}d=-\frac{12}{-5}
Divide 16 by -5.
d^{2}-\frac{16}{5}d=\frac{12}{5}
Divide -12 by -5.
d^{2}-\frac{16}{5}d+\left(-\frac{8}{5}\right)^{2}=\frac{12}{5}+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-\frac{16}{5}d+\frac{64}{25}=\frac{12}{5}+\frac{64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
d^{2}-\frac{16}{5}d+\frac{64}{25}=\frac{124}{25}
Add \frac{12}{5} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d-\frac{8}{5}\right)^{2}=\frac{124}{25}
Factor d^{2}-\frac{16}{5}d+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{8}{5}\right)^{2}}=\sqrt{\frac{124}{25}}
Take the square root of both sides of the equation.
d-\frac{8}{5}=\frac{2\sqrt{31}}{5} d-\frac{8}{5}=-\frac{2\sqrt{31}}{5}
Simplify.
d=\frac{2\sqrt{31}+8}{5} d=\frac{8-2\sqrt{31}}{5}
Add \frac{8}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}