Solve for x
x=1
x=\frac{15}{17}\approx 0.882352941
Graph
Share
Copied to clipboard
16-32x+16x^{2}+x^{2}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-4x\right)^{2}.
16-32x+17x^{2}=1
Combine 16x^{2} and x^{2} to get 17x^{2}.
16-32x+17x^{2}-1=0
Subtract 1 from both sides.
15-32x+17x^{2}=0
Subtract 1 from 16 to get 15.
17x^{2}-32x+15=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-32 ab=17\times 15=255
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 17x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-255 -3,-85 -5,-51 -15,-17
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 255.
-1-255=-256 -3-85=-88 -5-51=-56 -15-17=-32
Calculate the sum for each pair.
a=-17 b=-15
The solution is the pair that gives sum -32.
\left(17x^{2}-17x\right)+\left(-15x+15\right)
Rewrite 17x^{2}-32x+15 as \left(17x^{2}-17x\right)+\left(-15x+15\right).
17x\left(x-1\right)-15\left(x-1\right)
Factor out 17x in the first and -15 in the second group.
\left(x-1\right)\left(17x-15\right)
Factor out common term x-1 by using distributive property.
x=1 x=\frac{15}{17}
To find equation solutions, solve x-1=0 and 17x-15=0.
16-32x+16x^{2}+x^{2}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-4x\right)^{2}.
16-32x+17x^{2}=1
Combine 16x^{2} and x^{2} to get 17x^{2}.
16-32x+17x^{2}-1=0
Subtract 1 from both sides.
15-32x+17x^{2}=0
Subtract 1 from 16 to get 15.
17x^{2}-32x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 17\times 15}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, -32 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 17\times 15}}{2\times 17}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-68\times 15}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-32\right)±\sqrt{1024-1020}}{2\times 17}
Multiply -68 times 15.
x=\frac{-\left(-32\right)±\sqrt{4}}{2\times 17}
Add 1024 to -1020.
x=\frac{-\left(-32\right)±2}{2\times 17}
Take the square root of 4.
x=\frac{32±2}{2\times 17}
The opposite of -32 is 32.
x=\frac{32±2}{34}
Multiply 2 times 17.
x=\frac{34}{34}
Now solve the equation x=\frac{32±2}{34} when ± is plus. Add 32 to 2.
x=1
Divide 34 by 34.
x=\frac{30}{34}
Now solve the equation x=\frac{32±2}{34} when ± is minus. Subtract 2 from 32.
x=\frac{15}{17}
Reduce the fraction \frac{30}{34} to lowest terms by extracting and canceling out 2.
x=1 x=\frac{15}{17}
The equation is now solved.
16-32x+16x^{2}+x^{2}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-4x\right)^{2}.
16-32x+17x^{2}=1
Combine 16x^{2} and x^{2} to get 17x^{2}.
-32x+17x^{2}=1-16
Subtract 16 from both sides.
-32x+17x^{2}=-15
Subtract 16 from 1 to get -15.
17x^{2}-32x=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{17x^{2}-32x}{17}=-\frac{15}{17}
Divide both sides by 17.
x^{2}-\frac{32}{17}x=-\frac{15}{17}
Dividing by 17 undoes the multiplication by 17.
x^{2}-\frac{32}{17}x+\left(-\frac{16}{17}\right)^{2}=-\frac{15}{17}+\left(-\frac{16}{17}\right)^{2}
Divide -\frac{32}{17}, the coefficient of the x term, by 2 to get -\frac{16}{17}. Then add the square of -\frac{16}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{17}x+\frac{256}{289}=-\frac{15}{17}+\frac{256}{289}
Square -\frac{16}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{17}x+\frac{256}{289}=\frac{1}{289}
Add -\frac{15}{17} to \frac{256}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{17}\right)^{2}=\frac{1}{289}
Factor x^{2}-\frac{32}{17}x+\frac{256}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{17}\right)^{2}}=\sqrt{\frac{1}{289}}
Take the square root of both sides of the equation.
x-\frac{16}{17}=\frac{1}{17} x-\frac{16}{17}=-\frac{1}{17}
Simplify.
x=1 x=\frac{15}{17}
Add \frac{16}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}