Evaluate
\frac{143}{36}\approx 3.972222222
Factor
\frac{11 \cdot 13}{2 ^ {2} \cdot 3 ^ {2}} = 3\frac{35}{36} = 3.9722222222222223
Share
Copied to clipboard
4\times \frac{1}{3}\times 5\times \frac{2}{2\times 3}+7\times \frac{3}{3\times 4}
Multiply 1 and 3 to get 3.
\frac{4}{3}\times 5\times \frac{2}{2\times 3}+7\times \frac{3}{3\times 4}
Multiply 4 and \frac{1}{3} to get \frac{4}{3}.
\frac{4\times 5}{3}\times \frac{2}{2\times 3}+7\times \frac{3}{3\times 4}
Express \frac{4}{3}\times 5 as a single fraction.
\frac{20}{3}\times \frac{2}{2\times 3}+7\times \frac{3}{3\times 4}
Multiply 4 and 5 to get 20.
\frac{20}{3}\times \frac{2}{6}+7\times \frac{3}{3\times 4}
Multiply 2 and 3 to get 6.
\frac{20}{3}\times \frac{1}{3}+7\times \frac{3}{3\times 4}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{20\times 1}{3\times 3}+7\times \frac{3}{3\times 4}
Multiply \frac{20}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{9}+7\times \frac{3}{3\times 4}
Do the multiplications in the fraction \frac{20\times 1}{3\times 3}.
\frac{20}{9}+7\times \frac{3}{12}
Multiply 3 and 4 to get 12.
\frac{20}{9}+7\times \frac{1}{4}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{20}{9}+\frac{7}{4}
Multiply 7 and \frac{1}{4} to get \frac{7}{4}.
\frac{80}{36}+\frac{63}{36}
Least common multiple of 9 and 4 is 36. Convert \frac{20}{9} and \frac{7}{4} to fractions with denominator 36.
\frac{80+63}{36}
Since \frac{80}{36} and \frac{63}{36} have the same denominator, add them by adding their numerators.
\frac{143}{36}
Add 80 and 63 to get 143.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}