Solve for x
x = -\frac{9}{8} = -1\frac{1}{8} = -1.125
x = -\frac{15}{8} = -1\frac{7}{8} = -1.875
Graph
Share
Copied to clipboard
16\left(2x+3\right)^{2}=\left(-3\right)^{2}
Multiply 4 and 4 to get 16.
16\left(4x^{2}+12x+9\right)=\left(-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
64x^{2}+192x+144=\left(-3\right)^{2}
Use the distributive property to multiply 16 by 4x^{2}+12x+9.
64x^{2}+192x+144=9
Calculate -3 to the power of 2 and get 9.
64x^{2}+192x+144-9=0
Subtract 9 from both sides.
64x^{2}+192x+135=0
Subtract 9 from 144 to get 135.
x=\frac{-192±\sqrt{192^{2}-4\times 64\times 135}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 192 for b, and 135 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-192±\sqrt{36864-4\times 64\times 135}}{2\times 64}
Square 192.
x=\frac{-192±\sqrt{36864-256\times 135}}{2\times 64}
Multiply -4 times 64.
x=\frac{-192±\sqrt{36864-34560}}{2\times 64}
Multiply -256 times 135.
x=\frac{-192±\sqrt{2304}}{2\times 64}
Add 36864 to -34560.
x=\frac{-192±48}{2\times 64}
Take the square root of 2304.
x=\frac{-192±48}{128}
Multiply 2 times 64.
x=-\frac{144}{128}
Now solve the equation x=\frac{-192±48}{128} when ± is plus. Add -192 to 48.
x=-\frac{9}{8}
Reduce the fraction \frac{-144}{128} to lowest terms by extracting and canceling out 16.
x=-\frac{240}{128}
Now solve the equation x=\frac{-192±48}{128} when ± is minus. Subtract 48 from -192.
x=-\frac{15}{8}
Reduce the fraction \frac{-240}{128} to lowest terms by extracting and canceling out 16.
x=-\frac{9}{8} x=-\frac{15}{8}
The equation is now solved.
16\left(2x+3\right)^{2}=\left(-3\right)^{2}
Multiply 4 and 4 to get 16.
16\left(4x^{2}+12x+9\right)=\left(-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
64x^{2}+192x+144=\left(-3\right)^{2}
Use the distributive property to multiply 16 by 4x^{2}+12x+9.
64x^{2}+192x+144=9
Calculate -3 to the power of 2 and get 9.
64x^{2}+192x=9-144
Subtract 144 from both sides.
64x^{2}+192x=-135
Subtract 144 from 9 to get -135.
\frac{64x^{2}+192x}{64}=-\frac{135}{64}
Divide both sides by 64.
x^{2}+\frac{192}{64}x=-\frac{135}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}+3x=-\frac{135}{64}
Divide 192 by 64.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{135}{64}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{135}{64}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{9}{64}
Add -\frac{135}{64} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{64}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{3}{8} x+\frac{3}{2}=-\frac{3}{8}
Simplify.
x=-\frac{9}{8} x=-\frac{15}{8}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}