Solve for x
x = -\frac{81}{10} = -8\frac{1}{10} = -8.1
Graph
Share
Copied to clipboard
68-3\left(x-5\right)=2-13x
Multiply 4 and 17 to get 68.
68-3x+15=2-13x
Use the distributive property to multiply -3 by x-5.
83-3x=2-13x
Add 68 and 15 to get 83.
83-3x+13x=2
Add 13x to both sides.
83+10x=2
Combine -3x and 13x to get 10x.
10x=2-83
Subtract 83 from both sides.
10x=-81
Subtract 83 from 2 to get -81.
x=\frac{-81}{10}
Divide both sides by 10.
x=-\frac{81}{10}
Fraction \frac{-81}{10} can be rewritten as -\frac{81}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}