Solve for n
n=-12
n=5
Share
Copied to clipboard
\left(4n+8\right)\left(n+5\right)=280
Use the distributive property to multiply 4 by n+2.
4n^{2}+28n+40=280
Use the distributive property to multiply 4n+8 by n+5 and combine like terms.
4n^{2}+28n+40-280=0
Subtract 280 from both sides.
4n^{2}+28n-240=0
Subtract 280 from 40 to get -240.
n=\frac{-28±\sqrt{28^{2}-4\times 4\left(-240\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 28 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-28±\sqrt{784-4\times 4\left(-240\right)}}{2\times 4}
Square 28.
n=\frac{-28±\sqrt{784-16\left(-240\right)}}{2\times 4}
Multiply -4 times 4.
n=\frac{-28±\sqrt{784+3840}}{2\times 4}
Multiply -16 times -240.
n=\frac{-28±\sqrt{4624}}{2\times 4}
Add 784 to 3840.
n=\frac{-28±68}{2\times 4}
Take the square root of 4624.
n=\frac{-28±68}{8}
Multiply 2 times 4.
n=\frac{40}{8}
Now solve the equation n=\frac{-28±68}{8} when ± is plus. Add -28 to 68.
n=5
Divide 40 by 8.
n=-\frac{96}{8}
Now solve the equation n=\frac{-28±68}{8} when ± is minus. Subtract 68 from -28.
n=-12
Divide -96 by 8.
n=5 n=-12
The equation is now solved.
\left(4n+8\right)\left(n+5\right)=280
Use the distributive property to multiply 4 by n+2.
4n^{2}+28n+40=280
Use the distributive property to multiply 4n+8 by n+5 and combine like terms.
4n^{2}+28n=280-40
Subtract 40 from both sides.
4n^{2}+28n=240
Subtract 40 from 280 to get 240.
\frac{4n^{2}+28n}{4}=\frac{240}{4}
Divide both sides by 4.
n^{2}+\frac{28}{4}n=\frac{240}{4}
Dividing by 4 undoes the multiplication by 4.
n^{2}+7n=\frac{240}{4}
Divide 28 by 4.
n^{2}+7n=60
Divide 240 by 4.
n^{2}+7n+\left(\frac{7}{2}\right)^{2}=60+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+7n+\frac{49}{4}=60+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+7n+\frac{49}{4}=\frac{289}{4}
Add 60 to \frac{49}{4}.
\left(n+\frac{7}{2}\right)^{2}=\frac{289}{4}
Factor n^{2}+7n+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Take the square root of both sides of the equation.
n+\frac{7}{2}=\frac{17}{2} n+\frac{7}{2}=-\frac{17}{2}
Simplify.
n=5 n=-12
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}