Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

16\left(\sqrt{3}\right)^{2}-16\sqrt{3}\sqrt{6}+4\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4\sqrt{3}-2\sqrt{6}\right)^{2}.
16\times 3-16\sqrt{3}\sqrt{6}+4\left(\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
48-16\sqrt{3}\sqrt{6}+4\left(\sqrt{6}\right)^{2}
Multiply 16 and 3 to get 48.
48-16\sqrt{3}\sqrt{3}\sqrt{2}+4\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
48-16\times 3\sqrt{2}+4\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
48-48\sqrt{2}+4\left(\sqrt{6}\right)^{2}
Multiply -16 and 3 to get -48.
48-48\sqrt{2}+4\times 6
The square of \sqrt{6} is 6.
48-48\sqrt{2}+24
Multiply 4 and 6 to get 24.
72-48\sqrt{2}
Add 48 and 24 to get 72.
16\left(\sqrt{3}\right)^{2}-16\sqrt{3}\sqrt{6}+4\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4\sqrt{3}-2\sqrt{6}\right)^{2}.
16\times 3-16\sqrt{3}\sqrt{6}+4\left(\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
48-16\sqrt{3}\sqrt{6}+4\left(\sqrt{6}\right)^{2}
Multiply 16 and 3 to get 48.
48-16\sqrt{3}\sqrt{3}\sqrt{2}+4\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
48-16\times 3\sqrt{2}+4\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
48-48\sqrt{2}+4\left(\sqrt{6}\right)^{2}
Multiply -16 and 3 to get -48.
48-48\sqrt{2}+4\times 6
The square of \sqrt{6} is 6.
48-48\sqrt{2}+24
Multiply 4 and 6 to get 24.
72-48\sqrt{2}
Add 48 and 24 to get 72.