Evaluate
\frac{101}{24}\approx 4.208333333
Factor
\frac{101}{2 ^ {3} \cdot 3} = 4\frac{5}{24} = 4.208333333333333
Share
Copied to clipboard
\frac{\frac{20+2}{5}-\frac{1\times 8+7}{8}}{\frac{3}{10}}\times \frac{1}{2}
Multiply 4 and 5 to get 20.
\frac{\frac{22}{5}-\frac{1\times 8+7}{8}}{\frac{3}{10}}\times \frac{1}{2}
Add 20 and 2 to get 22.
\frac{\frac{22}{5}-\frac{8+7}{8}}{\frac{3}{10}}\times \frac{1}{2}
Multiply 1 and 8 to get 8.
\frac{\frac{22}{5}-\frac{15}{8}}{\frac{3}{10}}\times \frac{1}{2}
Add 8 and 7 to get 15.
\frac{\frac{176}{40}-\frac{75}{40}}{\frac{3}{10}}\times \frac{1}{2}
Least common multiple of 5 and 8 is 40. Convert \frac{22}{5} and \frac{15}{8} to fractions with denominator 40.
\frac{\frac{176-75}{40}}{\frac{3}{10}}\times \frac{1}{2}
Since \frac{176}{40} and \frac{75}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{101}{40}}{\frac{3}{10}}\times \frac{1}{2}
Subtract 75 from 176 to get 101.
\frac{101}{40}\times \frac{10}{3}\times \frac{1}{2}
Divide \frac{101}{40} by \frac{3}{10} by multiplying \frac{101}{40} by the reciprocal of \frac{3}{10}.
\frac{101\times 10}{40\times 3}\times \frac{1}{2}
Multiply \frac{101}{40} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1010}{120}\times \frac{1}{2}
Do the multiplications in the fraction \frac{101\times 10}{40\times 3}.
\frac{101}{12}\times \frac{1}{2}
Reduce the fraction \frac{1010}{120} to lowest terms by extracting and canceling out 10.
\frac{101\times 1}{12\times 2}
Multiply \frac{101}{12} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{101}{24}
Do the multiplications in the fraction \frac{101\times 1}{12\times 2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}