Evaluate
\frac{63}{20}=3.15
Factor
\frac{3 ^ {2} \cdot 7}{2 ^ {2} \cdot 5} = 3\frac{3}{20} = 3.15
Share
Copied to clipboard
\frac{60+11}{15}-\frac{1\times 12+7}{12}
Multiply 4 and 15 to get 60.
\frac{71}{15}-\frac{1\times 12+7}{12}
Add 60 and 11 to get 71.
\frac{71}{15}-\frac{12+7}{12}
Multiply 1 and 12 to get 12.
\frac{71}{15}-\frac{19}{12}
Add 12 and 7 to get 19.
\frac{284}{60}-\frac{95}{60}
Least common multiple of 15 and 12 is 60. Convert \frac{71}{15} and \frac{19}{12} to fractions with denominator 60.
\frac{284-95}{60}
Since \frac{284}{60} and \frac{95}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{189}{60}
Subtract 95 from 284 to get 189.
\frac{63}{20}
Reduce the fraction \frac{189}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}