Evaluate
\frac{12}{7}\approx 1.714285714
Factor
\frac{2 ^ {2} \cdot 3}{7} = 1\frac{5}{7} = 1.7142857142857142
Share
Copied to clipboard
\left(\frac{24}{42}+\frac{7}{42}\right)\times 6-\frac{19}{7}
Least common multiple of 7 and 6 is 42. Convert \frac{4}{7} and \frac{1}{6} to fractions with denominator 42.
\frac{24+7}{42}\times 6-\frac{19}{7}
Since \frac{24}{42} and \frac{7}{42} have the same denominator, add them by adding their numerators.
\frac{31}{42}\times 6-\frac{19}{7}
Add 24 and 7 to get 31.
\frac{31\times 6}{42}-\frac{19}{7}
Express \frac{31}{42}\times 6 as a single fraction.
\frac{186}{42}-\frac{19}{7}
Multiply 31 and 6 to get 186.
\frac{31}{7}-\frac{19}{7}
Reduce the fraction \frac{186}{42} to lowest terms by extracting and canceling out 6.
\frac{31-19}{7}
Since \frac{31}{7} and \frac{19}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{7}
Subtract 19 from 31 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}