Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

16+8x^{2}+\left(x^{2}\right)^{2}=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x^{2}\right)^{2}.
16+8x^{2}+x^{4}=5
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16+8x^{2}+x^{4}-5=0
Subtract 5 from both sides.
11+8x^{2}+x^{4}=0
Subtract 5 from 16 to get 11.
t^{2}+8t+11=0
Substitute t for x^{2}.
t=\frac{-8±\sqrt{8^{2}-4\times 1\times 11}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 8 for b, and 11 for c in the quadratic formula.
t=\frac{-8±2\sqrt{5}}{2}
Do the calculations.
t=\sqrt{5}-4 t=-\sqrt{5}-4
Solve the equation t=\frac{-8±2\sqrt{5}}{2} when ± is plus and when ± is minus.
x=-i\sqrt{4-\sqrt{5}} x=i\sqrt{4-\sqrt{5}} x=-i\sqrt{\sqrt{5}+4} x=i\sqrt{\sqrt{5}+4}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.