Solve for x (complex solution)
x=i\sqrt{4-\sqrt{5}}\approx 1.328131026i
x=-i\sqrt{4-\sqrt{5}}\approx -0-1.328131026i
x=-i\sqrt{\sqrt{5}+4}\approx -0-2.497212041i
x=i\sqrt{\sqrt{5}+4}\approx 2.497212041i
Graph
Share
Copied to clipboard
16+8x^{2}+\left(x^{2}\right)^{2}=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x^{2}\right)^{2}.
16+8x^{2}+x^{4}=5
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16+8x^{2}+x^{4}-5=0
Subtract 5 from both sides.
11+8x^{2}+x^{4}=0
Subtract 5 from 16 to get 11.
t^{2}+8t+11=0
Substitute t for x^{2}.
t=\frac{-8±\sqrt{8^{2}-4\times 1\times 11}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 8 for b, and 11 for c in the quadratic formula.
t=\frac{-8±2\sqrt{5}}{2}
Do the calculations.
t=\sqrt{5}-4 t=-\sqrt{5}-4
Solve the equation t=\frac{-8±2\sqrt{5}}{2} when ± is plus and when ± is minus.
x=-i\sqrt{4-\sqrt{5}} x=i\sqrt{4-\sqrt{5}} x=-i\sqrt{\sqrt{5}+4} x=i\sqrt{\sqrt{5}+4}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}