Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

32+24x+4x^{2}=64
Use the distributive property to multiply 4+2x by 8+2x and combine like terms.
32+24x+4x^{2}-64=0
Subtract 64 from both sides.
-32+24x+4x^{2}=0
Subtract 64 from 32 to get -32.
4x^{2}+24x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\times 4\left(-32\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 24 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\left(-32\right)}}{2\times 4}
Square 24.
x=\frac{-24±\sqrt{576-16\left(-32\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-24±\sqrt{576+512}}{2\times 4}
Multiply -16 times -32.
x=\frac{-24±\sqrt{1088}}{2\times 4}
Add 576 to 512.
x=\frac{-24±8\sqrt{17}}{2\times 4}
Take the square root of 1088.
x=\frac{-24±8\sqrt{17}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{17}-24}{8}
Now solve the equation x=\frac{-24±8\sqrt{17}}{8} when ± is plus. Add -24 to 8\sqrt{17}.
x=\sqrt{17}-3
Divide -24+8\sqrt{17} by 8.
x=\frac{-8\sqrt{17}-24}{8}
Now solve the equation x=\frac{-24±8\sqrt{17}}{8} when ± is minus. Subtract 8\sqrt{17} from -24.
x=-\sqrt{17}-3
Divide -24-8\sqrt{17} by 8.
x=\sqrt{17}-3 x=-\sqrt{17}-3
The equation is now solved.
32+24x+4x^{2}=64
Use the distributive property to multiply 4+2x by 8+2x and combine like terms.
24x+4x^{2}=64-32
Subtract 32 from both sides.
24x+4x^{2}=32
Subtract 32 from 64 to get 32.
4x^{2}+24x=32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+24x}{4}=\frac{32}{4}
Divide both sides by 4.
x^{2}+\frac{24}{4}x=\frac{32}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+6x=\frac{32}{4}
Divide 24 by 4.
x^{2}+6x=8
Divide 32 by 4.
x^{2}+6x+3^{2}=8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=8+9
Square 3.
x^{2}+6x+9=17
Add 8 to 9.
\left(x+3\right)^{2}=17
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
x+3=\sqrt{17} x+3=-\sqrt{17}
Simplify.
x=\sqrt{17}-3 x=-\sqrt{17}-3
Subtract 3 from both sides of the equation.