Solve for a
a=\frac{4\sqrt{5}}{5}-2\approx -0.211145618
a=-\frac{4\sqrt{5}}{5}-2\approx -3.788854382
Share
Copied to clipboard
16+16a+4a^{2}+\left(a+2\right)^{2}=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+2a\right)^{2}.
16+16a+4a^{2}+a^{2}+4a+4=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
16+16a+5a^{2}+4a+4=16
Combine 4a^{2} and a^{2} to get 5a^{2}.
16+20a+5a^{2}+4=16
Combine 16a and 4a to get 20a.
20+20a+5a^{2}=16
Add 16 and 4 to get 20.
20+20a+5a^{2}-16=0
Subtract 16 from both sides.
4+20a+5a^{2}=0
Subtract 16 from 20 to get 4.
5a^{2}+20a+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-20±\sqrt{20^{2}-4\times 5\times 4}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 20 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-20±\sqrt{400-4\times 5\times 4}}{2\times 5}
Square 20.
a=\frac{-20±\sqrt{400-20\times 4}}{2\times 5}
Multiply -4 times 5.
a=\frac{-20±\sqrt{400-80}}{2\times 5}
Multiply -20 times 4.
a=\frac{-20±\sqrt{320}}{2\times 5}
Add 400 to -80.
a=\frac{-20±8\sqrt{5}}{2\times 5}
Take the square root of 320.
a=\frac{-20±8\sqrt{5}}{10}
Multiply 2 times 5.
a=\frac{8\sqrt{5}-20}{10}
Now solve the equation a=\frac{-20±8\sqrt{5}}{10} when ± is plus. Add -20 to 8\sqrt{5}.
a=\frac{4\sqrt{5}}{5}-2
Divide -20+8\sqrt{5} by 10.
a=\frac{-8\sqrt{5}-20}{10}
Now solve the equation a=\frac{-20±8\sqrt{5}}{10} when ± is minus. Subtract 8\sqrt{5} from -20.
a=-\frac{4\sqrt{5}}{5}-2
Divide -20-8\sqrt{5} by 10.
a=\frac{4\sqrt{5}}{5}-2 a=-\frac{4\sqrt{5}}{5}-2
The equation is now solved.
16+16a+4a^{2}+\left(a+2\right)^{2}=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+2a\right)^{2}.
16+16a+4a^{2}+a^{2}+4a+4=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
16+16a+5a^{2}+4a+4=16
Combine 4a^{2} and a^{2} to get 5a^{2}.
16+20a+5a^{2}+4=16
Combine 16a and 4a to get 20a.
20+20a+5a^{2}=16
Add 16 and 4 to get 20.
20a+5a^{2}=16-20
Subtract 20 from both sides.
20a+5a^{2}=-4
Subtract 20 from 16 to get -4.
5a^{2}+20a=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5a^{2}+20a}{5}=-\frac{4}{5}
Divide both sides by 5.
a^{2}+\frac{20}{5}a=-\frac{4}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}+4a=-\frac{4}{5}
Divide 20 by 5.
a^{2}+4a+2^{2}=-\frac{4}{5}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+4a+4=-\frac{4}{5}+4
Square 2.
a^{2}+4a+4=\frac{16}{5}
Add -\frac{4}{5} to 4.
\left(a+2\right)^{2}=\frac{16}{5}
Factor a^{2}+4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{\frac{16}{5}}
Take the square root of both sides of the equation.
a+2=\frac{4\sqrt{5}}{5} a+2=-\frac{4\sqrt{5}}{5}
Simplify.
a=\frac{4\sqrt{5}}{5}-2 a=-\frac{4\sqrt{5}}{5}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}