Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\left(\frac{20}{5}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Convert 4 to fraction \frac{20}{5}.
\left(\frac{20+1}{5}+\frac{1}{6}+\frac{1}{7}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{20}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\left(\frac{21}{5}+\frac{1}{6}+\frac{1}{7}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 20 and 1 to get 21.
\left(\frac{126}{30}+\frac{5}{30}+\frac{1}{7}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 5 and 6 is 30. Convert \frac{21}{5} and \frac{1}{6} to fractions with denominator 30.
\left(\frac{126+5}{30}+\frac{1}{7}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{126}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\left(\frac{131}{30}+\frac{1}{7}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 126 and 5 to get 131.
\left(\frac{917}{210}+\frac{30}{210}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 30 and 7 is 210. Convert \frac{131}{30} and \frac{1}{7} to fractions with denominator 210.
\frac{917+30}{210}\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{917}{210} and \frac{30}{210} have the same denominator, add them by adding their numerators.
\frac{947}{210}\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 917 and 30 to get 947.
\frac{947}{210}\left(\frac{6}{30}+\frac{5}{30}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 5 and 6 is 30. Convert \frac{1}{5} and \frac{1}{6} to fractions with denominator 30.
\frac{947}{210}\left(\frac{6+5}{30}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{6}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\frac{947}{210}\left(\frac{11}{30}+\frac{1}{7}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 6 and 5 to get 11.
\frac{947}{210}\left(\frac{77}{210}+\frac{30}{210}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 30 and 7 is 210. Convert \frac{11}{30} and \frac{1}{7} to fractions with denominator 210.
\frac{947}{210}\left(\frac{77+30}{210}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{77}{210} and \frac{30}{210} have the same denominator, add them by adding their numerators.
\frac{947}{210}\left(\frac{107}{210}+\frac{1}{8}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 77 and 30 to get 107.
\frac{947}{210}\left(\frac{428}{840}+\frac{105}{840}\right)-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 210 and 8 is 840. Convert \frac{107}{210} and \frac{1}{8} to fractions with denominator 840.
\frac{947}{210}\times \frac{428+105}{840}-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{428}{840} and \frac{105}{840} have the same denominator, add them by adding their numerators.
\frac{947}{210}\times \frac{533}{840}-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 428 and 105 to get 533.
\frac{947\times 533}{210\times 840}-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Multiply \frac{947}{210} times \frac{533}{840} by multiplying numerator times numerator and denominator times denominator.
\frac{504751}{176400}-\left(4+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Do the multiplications in the fraction \frac{947\times 533}{210\times 840}.
\frac{504751}{176400}-\left(\frac{20}{5}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Convert 4 to fraction \frac{20}{5}.
\frac{504751}{176400}-\left(\frac{20+1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{20}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{504751}{176400}-\left(\frac{21}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 20 and 1 to get 21.
\frac{504751}{176400}-\left(\frac{126}{30}+\frac{5}{30}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 5 and 6 is 30. Convert \frac{21}{5} and \frac{1}{6} to fractions with denominator 30.
\frac{504751}{176400}-\left(\frac{126+5}{30}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{126}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\frac{504751}{176400}-\left(\frac{131}{30}+\frac{1}{7}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 126 and 5 to get 131.
\frac{504751}{176400}-\left(\frac{917}{210}+\frac{30}{210}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 30 and 7 is 210. Convert \frac{131}{30} and \frac{1}{7} to fractions with denominator 210.
\frac{504751}{176400}-\left(\frac{917+30}{210}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{917}{210} and \frac{30}{210} have the same denominator, add them by adding their numerators.
\frac{504751}{176400}-\left(\frac{947}{210}+\frac{1}{8}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 917 and 30 to get 947.
\frac{504751}{176400}-\left(\frac{3788}{840}+\frac{105}{840}\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Least common multiple of 210 and 8 is 840. Convert \frac{947}{210} and \frac{1}{8} to fractions with denominator 840.
\frac{504751}{176400}-\frac{3788+105}{840}\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Since \frac{3788}{840} and \frac{105}{840} have the same denominator, add them by adding their numerators.
\frac{504751}{176400}-\frac{3893}{840}\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)
Add 3788 and 105 to get 3893.
\frac{504751}{176400}-\frac{3893}{840}\left(\frac{6}{30}+\frac{5}{30}+\frac{1}{7}\right)
Least common multiple of 5 and 6 is 30. Convert \frac{1}{5} and \frac{1}{6} to fractions with denominator 30.
\frac{504751}{176400}-\frac{3893}{840}\left(\frac{6+5}{30}+\frac{1}{7}\right)
Since \frac{6}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\frac{504751}{176400}-\frac{3893}{840}\left(\frac{11}{30}+\frac{1}{7}\right)
Add 6 and 5 to get 11.
\frac{504751}{176400}-\frac{3893}{840}\left(\frac{77}{210}+\frac{30}{210}\right)
Least common multiple of 30 and 7 is 210. Convert \frac{11}{30} and \frac{1}{7} to fractions with denominator 210.
\frac{504751}{176400}-\frac{3893}{840}\times \frac{77+30}{210}
Since \frac{77}{210} and \frac{30}{210} have the same denominator, add them by adding their numerators.
\frac{504751}{176400}-\frac{3893}{840}\times \frac{107}{210}
Add 77 and 30 to get 107.
\frac{504751}{176400}-\frac{3893\times 107}{840\times 210}
Multiply \frac{3893}{840} times \frac{107}{210} by multiplying numerator times numerator and denominator times denominator.
\frac{504751}{176400}-\frac{416551}{176400}
Do the multiplications in the fraction \frac{3893\times 107}{840\times 210}.
\frac{504751-416551}{176400}
Since \frac{504751}{176400} and \frac{416551}{176400} have the same denominator, subtract them by subtracting their numerators.
\frac{88200}{176400}
Subtract 416551 from 504751 to get 88200.
\frac{1}{2}
Reduce the fraction \frac{88200}{176400} to lowest terms by extracting and canceling out 88200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}