Solve for x
x=105
x=5
Graph
Share
Copied to clipboard
2625-110x+x^{2}=2100
Use the distributive property to multiply 35-x by 75-x and combine like terms.
2625-110x+x^{2}-2100=0
Subtract 2100 from both sides.
525-110x+x^{2}=0
Subtract 2100 from 2625 to get 525.
x^{2}-110x+525=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-110\right)±\sqrt{\left(-110\right)^{2}-4\times 525}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -110 for b, and 525 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-110\right)±\sqrt{12100-4\times 525}}{2}
Square -110.
x=\frac{-\left(-110\right)±\sqrt{12100-2100}}{2}
Multiply -4 times 525.
x=\frac{-\left(-110\right)±\sqrt{10000}}{2}
Add 12100 to -2100.
x=\frac{-\left(-110\right)±100}{2}
Take the square root of 10000.
x=\frac{110±100}{2}
The opposite of -110 is 110.
x=\frac{210}{2}
Now solve the equation x=\frac{110±100}{2} when ± is plus. Add 110 to 100.
x=105
Divide 210 by 2.
x=\frac{10}{2}
Now solve the equation x=\frac{110±100}{2} when ± is minus. Subtract 100 from 110.
x=5
Divide 10 by 2.
x=105 x=5
The equation is now solved.
2625-110x+x^{2}=2100
Use the distributive property to multiply 35-x by 75-x and combine like terms.
-110x+x^{2}=2100-2625
Subtract 2625 from both sides.
-110x+x^{2}=-525
Subtract 2625 from 2100 to get -525.
x^{2}-110x=-525
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-110x+\left(-55\right)^{2}=-525+\left(-55\right)^{2}
Divide -110, the coefficient of the x term, by 2 to get -55. Then add the square of -55 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-110x+3025=-525+3025
Square -55.
x^{2}-110x+3025=2500
Add -525 to 3025.
\left(x-55\right)^{2}=2500
Factor x^{2}-110x+3025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-55\right)^{2}}=\sqrt{2500}
Take the square root of both sides of the equation.
x-55=50 x-55=-50
Simplify.
x=105 x=5
Add 55 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}