Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

700-75x+2x^{2}=250
Use the distributive property to multiply 35-2x by 20-x and combine like terms.
700-75x+2x^{2}-250=0
Subtract 250 from both sides.
450-75x+2x^{2}=0
Subtract 250 from 700 to get 450.
2x^{2}-75x+450=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-75\right)±\sqrt{\left(-75\right)^{2}-4\times 2\times 450}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -75 for b, and 450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-75\right)±\sqrt{5625-4\times 2\times 450}}{2\times 2}
Square -75.
x=\frac{-\left(-75\right)±\sqrt{5625-8\times 450}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-75\right)±\sqrt{5625-3600}}{2\times 2}
Multiply -8 times 450.
x=\frac{-\left(-75\right)±\sqrt{2025}}{2\times 2}
Add 5625 to -3600.
x=\frac{-\left(-75\right)±45}{2\times 2}
Take the square root of 2025.
x=\frac{75±45}{2\times 2}
The opposite of -75 is 75.
x=\frac{75±45}{4}
Multiply 2 times 2.
x=\frac{120}{4}
Now solve the equation x=\frac{75±45}{4} when ± is plus. Add 75 to 45.
x=30
Divide 120 by 4.
x=\frac{30}{4}
Now solve the equation x=\frac{75±45}{4} when ± is minus. Subtract 45 from 75.
x=\frac{15}{2}
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
x=30 x=\frac{15}{2}
The equation is now solved.
700-75x+2x^{2}=250
Use the distributive property to multiply 35-2x by 20-x and combine like terms.
-75x+2x^{2}=250-700
Subtract 700 from both sides.
-75x+2x^{2}=-450
Subtract 700 from 250 to get -450.
2x^{2}-75x=-450
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-75x}{2}=-\frac{450}{2}
Divide both sides by 2.
x^{2}-\frac{75}{2}x=-\frac{450}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{75}{2}x=-225
Divide -450 by 2.
x^{2}-\frac{75}{2}x+\left(-\frac{75}{4}\right)^{2}=-225+\left(-\frac{75}{4}\right)^{2}
Divide -\frac{75}{2}, the coefficient of the x term, by 2 to get -\frac{75}{4}. Then add the square of -\frac{75}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{75}{2}x+\frac{5625}{16}=-225+\frac{5625}{16}
Square -\frac{75}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{75}{2}x+\frac{5625}{16}=\frac{2025}{16}
Add -225 to \frac{5625}{16}.
\left(x-\frac{75}{4}\right)^{2}=\frac{2025}{16}
Factor x^{2}-\frac{75}{2}x+\frac{5625}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{75}{4}\right)^{2}}=\sqrt{\frac{2025}{16}}
Take the square root of both sides of the equation.
x-\frac{75}{4}=\frac{45}{4} x-\frac{75}{4}=-\frac{45}{4}
Simplify.
x=30 x=\frac{15}{2}
Add \frac{75}{4} to both sides of the equation.