Solve for x
x=\frac{\sqrt{130}}{2}+18\approx 23.700877125
x=-\frac{\sqrt{130}}{2}+18\approx 12.299122875
Graph
Share
Copied to clipboard
640-72x+2x^{2}=57
Use the distributive property to multiply 32-2x by 20-x and combine like terms.
640-72x+2x^{2}-57=0
Subtract 57 from both sides.
583-72x+2x^{2}=0
Subtract 57 from 640 to get 583.
2x^{2}-72x+583=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 2\times 583}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -72 for b, and 583 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 2\times 583}}{2\times 2}
Square -72.
x=\frac{-\left(-72\right)±\sqrt{5184-8\times 583}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-72\right)±\sqrt{5184-4664}}{2\times 2}
Multiply -8 times 583.
x=\frac{-\left(-72\right)±\sqrt{520}}{2\times 2}
Add 5184 to -4664.
x=\frac{-\left(-72\right)±2\sqrt{130}}{2\times 2}
Take the square root of 520.
x=\frac{72±2\sqrt{130}}{2\times 2}
The opposite of -72 is 72.
x=\frac{72±2\sqrt{130}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{130}+72}{4}
Now solve the equation x=\frac{72±2\sqrt{130}}{4} when ± is plus. Add 72 to 2\sqrt{130}.
x=\frac{\sqrt{130}}{2}+18
Divide 72+2\sqrt{130} by 4.
x=\frac{72-2\sqrt{130}}{4}
Now solve the equation x=\frac{72±2\sqrt{130}}{4} when ± is minus. Subtract 2\sqrt{130} from 72.
x=-\frac{\sqrt{130}}{2}+18
Divide 72-2\sqrt{130} by 4.
x=\frac{\sqrt{130}}{2}+18 x=-\frac{\sqrt{130}}{2}+18
The equation is now solved.
640-72x+2x^{2}=57
Use the distributive property to multiply 32-2x by 20-x and combine like terms.
-72x+2x^{2}=57-640
Subtract 640 from both sides.
-72x+2x^{2}=-583
Subtract 640 from 57 to get -583.
2x^{2}-72x=-583
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-72x}{2}=-\frac{583}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{72}{2}\right)x=-\frac{583}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-36x=-\frac{583}{2}
Divide -72 by 2.
x^{2}-36x+\left(-18\right)^{2}=-\frac{583}{2}+\left(-18\right)^{2}
Divide -36, the coefficient of the x term, by 2 to get -18. Then add the square of -18 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-36x+324=-\frac{583}{2}+324
Square -18.
x^{2}-36x+324=\frac{65}{2}
Add -\frac{583}{2} to 324.
\left(x-18\right)^{2}=\frac{65}{2}
Factor x^{2}-36x+324. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-18\right)^{2}}=\sqrt{\frac{65}{2}}
Take the square root of both sides of the equation.
x-18=\frac{\sqrt{130}}{2} x-18=-\frac{\sqrt{130}}{2}
Simplify.
x=\frac{\sqrt{130}}{2}+18 x=-\frac{\sqrt{130}}{2}+18
Add 18 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}