Evaluate
2y^{2}+15y-35
Expand
2y^{2}+15y-35
Graph
Share
Copied to clipboard
3y^{2}+12y-5y-20-\left(y-3\right)\left(y-5\right)
Apply the distributive property by multiplying each term of 3y-5 by each term of y+4.
3y^{2}+7y-20-\left(y-3\right)\left(y-5\right)
Combine 12y and -5y to get 7y.
3y^{2}+7y-20-\left(y^{2}-5y-3y+15\right)
Apply the distributive property by multiplying each term of y-3 by each term of y-5.
3y^{2}+7y-20-\left(y^{2}-8y+15\right)
Combine -5y and -3y to get -8y.
3y^{2}+7y-20-y^{2}-\left(-8y\right)-15
To find the opposite of y^{2}-8y+15, find the opposite of each term.
3y^{2}+7y-20-y^{2}+8y-15
The opposite of -8y is 8y.
2y^{2}+7y-20+8y-15
Combine 3y^{2} and -y^{2} to get 2y^{2}.
2y^{2}+15y-20-15
Combine 7y and 8y to get 15y.
2y^{2}+15y-35
Subtract 15 from -20 to get -35.
3y^{2}+12y-5y-20-\left(y-3\right)\left(y-5\right)
Apply the distributive property by multiplying each term of 3y-5 by each term of y+4.
3y^{2}+7y-20-\left(y-3\right)\left(y-5\right)
Combine 12y and -5y to get 7y.
3y^{2}+7y-20-\left(y^{2}-5y-3y+15\right)
Apply the distributive property by multiplying each term of y-3 by each term of y-5.
3y^{2}+7y-20-\left(y^{2}-8y+15\right)
Combine -5y and -3y to get -8y.
3y^{2}+7y-20-y^{2}-\left(-8y\right)-15
To find the opposite of y^{2}-8y+15, find the opposite of each term.
3y^{2}+7y-20-y^{2}+8y-15
The opposite of -8y is 8y.
2y^{2}+7y-20+8y-15
Combine 3y^{2} and -y^{2} to get 2y^{2}.
2y^{2}+15y-20-15
Combine 7y and 8y to get 15y.
2y^{2}+15y-35
Subtract 15 from -20 to get -35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}