Solve for x
x = \frac{\sqrt{793} + 23}{12} \approx 4.26335464
x=\frac{23-\sqrt{793}}{12}\approx -0.430021307
Graph
Share
Copied to clipboard
6x^{2}-23x+20=31
Use the distributive property to multiply 3x-4 by 2x-5 and combine like terms.
6x^{2}-23x+20-31=0
Subtract 31 from both sides.
6x^{2}-23x-11=0
Subtract 31 from 20 to get -11.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 6\left(-11\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -23 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-23\right)±\sqrt{529-4\times 6\left(-11\right)}}{2\times 6}
Square -23.
x=\frac{-\left(-23\right)±\sqrt{529-24\left(-11\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-23\right)±\sqrt{529+264}}{2\times 6}
Multiply -24 times -11.
x=\frac{-\left(-23\right)±\sqrt{793}}{2\times 6}
Add 529 to 264.
x=\frac{23±\sqrt{793}}{2\times 6}
The opposite of -23 is 23.
x=\frac{23±\sqrt{793}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{793}+23}{12}
Now solve the equation x=\frac{23±\sqrt{793}}{12} when ± is plus. Add 23 to \sqrt{793}.
x=\frac{23-\sqrt{793}}{12}
Now solve the equation x=\frac{23±\sqrt{793}}{12} when ± is minus. Subtract \sqrt{793} from 23.
x=\frac{\sqrt{793}+23}{12} x=\frac{23-\sqrt{793}}{12}
The equation is now solved.
6x^{2}-23x+20=31
Use the distributive property to multiply 3x-4 by 2x-5 and combine like terms.
6x^{2}-23x=31-20
Subtract 20 from both sides.
6x^{2}-23x=11
Subtract 20 from 31 to get 11.
\frac{6x^{2}-23x}{6}=\frac{11}{6}
Divide both sides by 6.
x^{2}-\frac{23}{6}x=\frac{11}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{23}{6}x+\left(-\frac{23}{12}\right)^{2}=\frac{11}{6}+\left(-\frac{23}{12}\right)^{2}
Divide -\frac{23}{6}, the coefficient of the x term, by 2 to get -\frac{23}{12}. Then add the square of -\frac{23}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{6}x+\frac{529}{144}=\frac{11}{6}+\frac{529}{144}
Square -\frac{23}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{23}{6}x+\frac{529}{144}=\frac{793}{144}
Add \frac{11}{6} to \frac{529}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{23}{12}\right)^{2}=\frac{793}{144}
Factor x^{2}-\frac{23}{6}x+\frac{529}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{12}\right)^{2}}=\sqrt{\frac{793}{144}}
Take the square root of both sides of the equation.
x-\frac{23}{12}=\frac{\sqrt{793}}{12} x-\frac{23}{12}=-\frac{\sqrt{793}}{12}
Simplify.
x=\frac{\sqrt{793}+23}{12} x=\frac{23-\sqrt{793}}{12}
Add \frac{23}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}